
Towards a Semantic Event-Based
Service-Oriented Architecture

Carlos Pedrinaci1, Matthew Moran2, and Barry Norton1

1 Knowledge Media Institute, The Open University, Milton Keynes, UK.
{c.pedrinaci, b.j.norton}@open.ac.uk

2 Digital Enterprise Research Inst. (DERI), National University of Ireland, Galway.
matthew.moran@deri.org

Abstract. 1 Service-Oriented Architecture (SOA) is commonly lauded
as a silver bullet for Enterprise Application Integration, inter-organizational
business processes implementation, and even as a general solution for the
development of all complex Web-oriented applications. However, SOA
without semantic descriptions of its data, processes and messaging mod-
els fails to achieve a truly flexible and dynamic infrastructure. In this pa-
per we explain where semantics are necessary for SOA and present early
work on a Semantic Execution Environment which couples the Service-
Oriented and Event-Driven architecture styles with formal semantics.

1 Introduction

Service Oriented Architecture (SOA) is currently regarded as the next step for
software architectures, catering for the assembly of software systems into more
complex solutions with the promise of reasonable costs. Although WSDL, XML
and BPEL make SOA possible, problems quickly arise when services using dif-
ferent data and process definitions need to be integrated. Semantic annotation
of all aspects of Web service, including their capabilities, data and processes, is
an important step towards making SOA a success. To fully make use of Semantic
Web services(SWS), execution environments are required for semantics-enriched
service discovery, selection, composition and invocation. A specification for such
an environment is the objective of the OASIS Semantic Execution Environment
(SEE)2. This paper reviews the status of SOA and Semantic Web Services in
Section 2 and looks at how SOA, the Event-Driven Architecture (EDA) [7] and
existing SWS research relate to the developing specification of SEE. Section 3
briefly describes the state of the OASIS SEE and Section 4 concludes the paper.

2 Background

The main rationale underpinning SOA is the conceptualization of IT systems’
capabilities as well-defined, independent, invocable, distributable and typically
1 Funded by EU Integrated Projects, DIP FP6-507483 and SUPER FP6-026850
2 http://www.oasis-open.org/committees/tc home.php?wg abbrev=semantic-ex



coarse-grained services [5]. Conceptually, SOA prescribes that service specifica-
tion be decoupled from implementation to achieve what is regarded as the main
technical benefit of SOA, i.e. maintaining a loose coupling between integrated
components. Despite their success, there still remain important challenges to be
addressed in current SOA-based solutions. Discovering and composing suitable
services are typically part of any development process based on SOA but, noth-
ing is prescribed for effectively supporting these activities. UDDI is the most
well-known specification for an XML-based registry of service descriptions on
the Web but the descriptions are syntactic only - the meaning is still open to
interpretation by the user. Similarly, service composition is mainly based on the
syntactic descriptions provided by WSDL, which are necessary but not sufficient,
since the semantics remain implicit and cannot be automatically processed [3].

Additional architectural inconveniences arise from the fact that in typical
SOA implementations, clients establish one-to-one synchronous communications
with services. Firstly, synchronous communications are not always suitable or
even possible as they may lead to reliability, latency and quality-of-service degra-
dation. Secondly, there remains the need for further decoupling since clients ini-
tiate services execution and they must therefore know the services to be used
in advance. Thus, dropping a new service into an existing SOA system does not
imply that existing software will directly start taking benefit from this new capa-
bility offered. Facing these challenges, major IT vendors are currently proposing
coupling SOA with EDA [7]. EDA is another architectural style that prescribes
that communication between components has to be performed on the basis of
event notifications, where events are basically understood as changes in the state
of something relevant for the system. Communication between system compo-
nents solely takes place through event notifications which are generated by so-
called event producers. These events are populated by the Message-Oriented
Middleware, and may trigger reactions by so-called event consumers. In contrast
with SOA, event producers and event consumers are completely decoupled and
many-to-many asynchronous communications between them are supported, the
communication middleware being in charge of appropriately distributing over
the systems components.

Coupling SOA and EDA we obtain a particularly appealing architecture for
supporting the effective execution of possibly distributed and completely decou-
pled services, synchronously or asynchronously executed in an efficient manner.
Still, as can be distilled from the state-of-art, this is not all there needs to be [7].
Event-based communication is indeed a useful way for a decoupled integration
but it does not, and it actually cannot, avoid the need to agree on the events
and the need for mediating between heterogeneous data models [7]. Designing
new systems will require establishing an agreement on which events there need
to be, their syntax and their actual semantics. Thus, adapting or, as we prefer
to call it, mediating between data models remains a critical requirement.

In parallel with the work performed in the Software Architecture community,
research on Semantic Web Services has been devoted to supporting a greater au-
tomation of the discovery and composition of Web Services. This research mainly



builds upon Semantic Web technologies in order to deal with data heterogeneity.
The METEOR-S [9] project aims to extend existing technology for annotating,
discovering, composing and executing Web services with semantics. Central to
METEOR-S is the combination of WSDL-S [1], a bottom-up approach to seman-
tic annotation of Web services, with the use of planning techniques. OWL-S [6]
defines an ontology for Semantic Web Services based on the Web Ontology Lan-
guage (OWL). Multiple tools are available but they are mostly independently
developed and not part of a cohesive architecture. Finally, the Web Services Exe-
cution Environment (WSMX) [4], and the IRS-III [2] are initiatives based on the
Web Services Modeling Ontology (WSMO) [8]. Both WSMX and IRS-III repre-
sent the main technical contributions for the Semantic Execution Environment
we present next.

3 The Semantic Execution Environment

The semantic annotation of autonomous heterogeneous Web services is moti-
vated by the drive to automate the discovery, composition and invocation of
services across the Web. Realising this requires a supporting infrastructure of
software that can interpret and, where appropriate, execute the semantic descrip-
tions. As can be distilled from the previous discussion, a fully-fledged infrastruc-
ture that applies Semantic Web Services technologies and meets the strong Soft-
ware Engineering requirements of real-life scenarios remains to be developed.
To that end, the OASIS SEE technical committee is chartered to produce a
guideline specification for a SWS execution environment.

SEE aims to reconcile state-of-the-art research on Semantic Web Services
with mainstream architectural support for service-oriented systems in what we
refer to as a Semantic Event-Based Service-Oriented Architecture. SEE speci-
fies a generic architecture for the Goal-based discovery, composition, mediation
and invocation of Web services based on their semantic annotation using the
conceptual model provided by WSMO.

A fundamental principle of SEE is the decoupling of its components. These do
not invoke each other directly either via local or remote object methods. Instead
SEE adopts an event-based mechanism where components subscribe to events
that they can consume and can publish events intended for other components.
From the design perspective, there is no constraint on components being located
on different physical servers as long as a network connection is available.

Analogously to semantic annotation of data and services, reaching full se-
mantic interoperability between SEE components requires a formalisation of the
events being exchanged. We initially identify two categories of events - data
and process. Data events refer to a business occurrence relevant for the system
to achieve its goals e.g. discovery request, mediation request etc. Formalising
data events is, as we previously discussed, necessary for achieving a convenient
framework for interoperability. In contrast, process events relate to the state of
activities e.g. start of discovery and aim to support workflow monitoring and
compensation.



4 Conclusions

In this paper, we highlight the symbiosis between the SOA and EDA architec-
tural styles for supporting flexible service-oriented systems . We have introduced
the main principles underlying SEE, which is based on what we refer to as Se-
mantic Event-Based Service-Oriented Architecture, a novel architectural style
that aims to circumvent the drawbacks of SOA and EDA by providing formal
semantics for all aspects of the architecture. Our analysis highlights the need for
applying semantics to various aspects of the infrastructure to support the Seman-
tic Web services vision. Additionally we have identified the need for formalizing
what we refer to as Data and Process events, in order to support modifying,
validating and monitoring the execution environment. Future work in the con-
text of SEE will be devoted to formalizing the components, formalizing Data
and Process Events, and applying workflow mining and monitoring techniques
for the validation and monitoring of execution environment.

References

1. R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, Amit.
Sheth, and Kunal Verma. Web service semantics - wsdl-s, available at
http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/. Technical report, 2005.

2. Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta, Barry Norton,
Vlad Tanasescu, and Carlos Pedrinaci. IRS-III: A Broker for Semantic Web Ser-
vices based Applications. In Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), Athens, GA, USA, 2006. (To appear).

3. J. Euzenat. Towards a principled approach to semantic interoperability. In Proceed-
ings of IJCAI workshop on Ontologies and information sharing, Seattle (WA), US,
2001.

4. Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph Bussler.
WSMX – A Semantic Service-Oriented Architecture. In Proc. of the 3rd Int. Conf.
on Web Services, pages 321 – 328. IEEE Computer Society, 2005.

5. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz. OASIS
Reference Model for Service Oriented Architecture V 1.0. Technical report, OASIS,
July 2006.

6. D. Martin and et. al. OWL-S: Semantic Markup for Web Services, version 1.1
available at http://www.daml.org/services/owl-s/1.1/. Technical report, 2004.

7. G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems. Springer-
Verlag, 2006.

8. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Ruben Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

9. Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, and Zixin Wu.
The METEOR-S Approach for Configuring and Executing Dynamic Web Processes,
Technical Report, available at http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-
24-05.pdf. Technical report, 2005.


