
Designing a Document Retrieval Service with
Onto⇔SOA

Maksym Korotkiy and Jan Top

Vrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

maksym@cs.vu.nl jltop@cs.vu.nl

Abstract. We describeOnto⇔SOA– an approach to integrate ontologies and
Service-Oriented Architectures (SOA) to provide a simple yet effective mech-
anism for representing and exploiting bothconceptualand behavioraldomain
aspects. We interpret SOA asan architectural styleconstrained to induce thedo-
main alignmentand loose couplingcharacteristics on a compliant architecture.
By introducing ontologies into SOA we enhance these characteristics and supply
an explicitconceptual domain modelfacilitating interoperability between a ser-
vice and a consumer. We applyOnto⇔SOAto the document retrieval task that
provides a basis for comparing the proposed approach to Semantic Web Services.

1 Introduction

The potential of true integration of Service-Oriented Architectures (SOA) and ontolo-
gies has been recognized by the Semantic Web Services (SWS) research community,
with OWL-S [1] and WSMO [2] approaches being the two most well-known represen-
tatives. Both OWL-S and WSMO provide extensive ontology-based description frame-
works for Web Services. The frameworks are meant to automate service-related tasks
such as discovery, invocation, choreography and orchestration.

SWS researchers face a number of difficulties. We believe that these are caused by
the fact that aformal ontology language is applied to avery broadlydefined notion of
a service. Moreover, the SWS approaches simultaneously targeta number of taskseach
of which is complex in itself. Our intuition is that integration of ontologies and SOA
does not inherently require the level of complexity observable in the SWS approaches.
We illustrate this with Onto⇔SOA – a framework that integrates ontologies and ser-
vices to provide a simple yet effective mechanism for representing and exploiting both
conceptualandbehavioraldomain aspects. In Onto⇔SOA we introduce a number of
assumptions about services and associated ontologies that reduce the challenges met by
the SWS approaches.

We employ the Software Architectures perspective to analyze the properties of a
service and SOA. Software Architectures [3] aim to provide guidelines for design and
analysis of software systems that possess certain characteristics. In [4] we have de-
scribed Onto⇔SOA asan architectural style that combines ontologies and SOA in a
technology and ontology language independent manner.

In Onto⇔SOA we propose to employ an ontology-based domain model as a di-
rect input to a service. This differs from the more traditional data-oriented approach



in which a conceptual domain model is considered as an intermediate design artefact
rather than a direct input. We argue that a service, and more generally SOA, is well
suited for processing of domain models because SOA explicitly addressdomain-aligned
functionality.

We have implemented Onto⇔SOA in MoRe1 – a Java framework that facilitates
integration of RDF/S [10, 11] ontologies and REST Web services. We have employed
MoRein a number of use cases from the e-Science domain [5]. In this paper we describe
the Document Retrieval case in which we employMoReto design and implement an
ontology-enabled service-oriented solution to the problem of finding documents that
match a given query.

In Sec. 2 we outline the Document Retrieval case which will be a running example
throughout the paper. In Sec. 3 we define SOA as an architectural style and introduce
the Onto⇔SOA framework. Sec. 4 briefly compares traditional Web Services to the
SOA style and outlines the main differences between Onto⇔SOA and Semantic Web
Services. After that, we return to the Document Retrieval case in Sec. 5 to illustrate the
Onto⇔SOA solution. Finally, we conclude with Sec. 6.

2 Document Retrieval Case

We employ the task of retrieving documents to demonstrate the main characteristics
of SOA and illustrate the Onto⇔SOA approach. The case addresses the design of a
service-oriented software system capable of solving the Document Retrieval case. From
the user perspective the case can be defined as follows.Given a collection

of documents and a text query, find all

Fig. 1. The Document Retrieval applica-
tion domain and a corresponding OO ar-
chitecture.

documents from that collection that match
the given query. We will refer to this user’s
view as the Document Retrievalapplica-
tion domain– aconceptual description of
the problem domain as perceived by the
user. In this case, the application domain
can be described with concepts directly
extracted from its definition:document,
document collection, query, retrieved doc-
uments(the left-hand side of Fig. 1).

We use Lucene2 – a well-known open
source Java API for document retrieval
– as a reference OO design and imple-
mentation. In Web Services it is common
practice to design a service as a rather
thin wrapper around an, usually existing,

OO design. The resulting approach preserves most of the original OO characteristics
and differs primarily in data serialization and communication layers. This allows us to

1 MoReused to be an abbreviation, however by now it has lost the original meaning. Presently
we employ it as a label only.

2 http://lucene.apache.org/



directly employ the Lucene’s OO design as an approximation of Web Services practices,
to which we will contrast SOA defined as an architectural style.

Lucene’s approach to document retrieval will reappear in the alternative designs
throughout the paper. The approach consists of two main steps implemented by a num-
ber of objects, as depicted in the right-hand side of Fig. 1:

1. Document Indexingis supported by the Parser, Analyzer and IndexWriter objects.
Parser extracts the structure and content from a document. Then, Analyzer applies
natural language processing techniques (stop-words filtering, stemming etc) to the
document’s content. IndexWriter pre-computes statistical information (term and
document frequencies) and stores it in an index along with the term-document map.
The main purpose of the index is to improve the speed of the document retrieval
process by providing quick access to the pre-computed statistics and documents
containing a given term.

2. Document Searchis supported by the IndexSearcher object that takes a text query,
processes it with Analyzer and accesses the index to obtain the pre-computed statis-
tics and documents containing query terms. The statistics is used to compute the
ranks of the retrieved documents.

In Lucene the described steps must be coordinated in several ways.Document In-
dexingmust precedeDocument Search, otherwise the index might contain no data about
the documents being queried. The same type of Analyzer must be employed in each of
the steps, otherwise processed document terms might not match processed query terms.
Since multiple indexes are possible, an index to be employed must be identified at each
step as well.

The user must be aware of the peculiarities of Lucene’s approach in order to suc-
cessfully employ the API. Lucene’s approach to document retrieval can be seen as a
refinement of the user’s view on theapplication domain. The main purpose of this re-
finement is to construct a more flexible domain model that enables implementation of
a configurable software system. This flexibility is obtained by exposing internal details
and requires the user’s conceptualization to include the corresponding concepts (ana-
lyzer, indexetc). However, strictly speaking, these concepts are irrelevant to the user
and, therefore, do not belong to the Document Retrieval application domain specified
above.

3 Onto⇔SOA: an Ontology-enabled SOA

In this section we outline the main ideas behind Onto⇔SOA. In Sec. 3.1 we define
SOA as an architectural style that emphasizesdomain alignmentand loose coupling
characteristics of a service. In Sec. 3.2 we introduce ontologies into the SOA style to
enhance the above-mentioned characteristics.

3.1 SOA as an Architectural Style

A number of viewpoints on and definitions ofa serviceandSOAexist in different com-
munities [6] as well as within the Software Engineering field [7]. To cope with this am-



biguity, in Onto⇔SOA we explicitly restrict services tobusiness-alignedandloosely-
coupledentities only. We consider these two characteristics to be the key properties of
a service rather than being merely slogans.

Surprisingly, we have not found any attempts

Fig. 2.SOA elements.

to define SOA from the viewpoint of Software Ar-
chitectures. While defining SOA as an architectural
style, we analyze relationships among the key char-
acteristics of a service, its internal properties and
the target application domain. This will determine
how we can further support the target characteris-
tics by means of ontologies.

In [8] an architectural styleis defined as “a co-
ordinated set of constraints on architectural elements

and relationships among those elements within any architecture that conforms to that
style”. The same reference definesa software architectureas “an abstraction of run-time
characteristics of a software system during some phase of its operation”. As an abstrac-
tion, an architecture provides a simplified view on a software system with only relevant
characteristics highlighted. Since there exist a virtually infinite number of combinations
of architectural characteristics, a software system can have many architectures. How-
ever, there is a limited number of characteristics which are relevant in practice.

A software architectureprovides the means to analyze the characteristics of a sys-
tem but it does not instruct on how an architecture should be designed to possess those
characteristics. Anarchitectural styleaddresses this issue by imposing constraints on
architectural elements, thus, inducing desired characteristics on an architecture.

The most general architectural elements areprocessing components, connectorsand
data. Processing components can transform data elements. Connectors provide an ab-
stract mechanism that mediates communication, coordination or cooperation among
components [9]. From the processing component perspective, connectors transfer data
without modifying them. Nevertheless, internally a connector can contain a complex
subsystem that subjects the data to a number of intermediate transformations. We inter-
pret SOA as an architectural style that restricts its elements shown in Fig. 2 to induce
the domain alignmentand loose couplingcharacteristics upon which we elaborate in
the rest of this section.

Loose Coupling Loose couplingimplies reducing dependencies between system com-
ponents. This is beneficial for a system subjected to frequent changes. To reduce depen-
dency between a service and a consumer we constrain the connector and data elements.

We require connectors to be simple, generic and application independent. This al-
lows one to deploy the connector across different application domains or make them
unaffected by changes in the application domain. We require data elements to con-
tain descriptive messages because descriptive messages require less assumptions than
prescriptive ones. Normally, in a prescriptive message we must specify the operation
name, its inputs, outputs, preconditions and effects. A descriptive message is specified
by inputs only. A schema language defines a unified syntax and structure of messages.
Additionally, it must be able to address a wide range of application domains. A schema



provides vocabulary required to express and interpret messages. Since we keep the con-
nectors as simple as possible, a schema only addresses data elements (messages) which
accommodate all service-specific details.

In document-orientedmessaging3 a service and a consumer exchange messages
that can be directly linked to artifacts in an application domain (a purchase order or
a document corpus, for example). This contrasts to the data-oriented messaging style
such as SOAP-RPC. In SOA we favordocument-orientedmessaging because of its
descriptivenature.

In SOA there is a uni-directional dependency between a consumer and a service:
a consumer depends on the functionality provided by a service but a service is inde-
pendent from its consumers. Decoupling between a consumer and a service can be
increased by favoringsession stateless services4. In this way we ensure that a service
does not rely on a client to perform a defined sequence of actions.

Domain Alignment In SOA services are often referred to asbusiness aligned. We
translatebusiness alignmentinto the more generaldomain alignmentcharacteristic de-
fined as the ability of a service to have a direct relationship (support, facilitate, enable
etc) with domain elements (processes, requirements etc). The SOA style, therefore,
constrains its elements to establish a direct link to domain elements.

In a system consisting of multiple components some of them are better aligned to
the system domain than others. We propose to use the degree of a component’s gran-
ularity as an indication of its alignment to the system domain (domain alignment). A
coarsely-grainedcomponent encapsulates complex functionality that is likely to have a
direct connection to the domain of discourse. We assume that the morecoarsely-grained
component is – the better it is aligned to the system domain, and, therefore, the better it
is suited to become a service. Since we inducedomain alignmentvia coarsely-grained
processing components, we assume that the mostcoarsely-grainedcomponent is the
best candidate to become a service. This implies that it should be always possible to
define exactly one most coarsely-grained processing component for a given application
domain.

Omnipotenceof a service is a direct consequence of the statement above.Omnipo-
tencemeans that a service is self-contained in the sense that it requires no other services
within the same domain to provide its functionality. This does not restrict interaction
between services that belong todifferent domains.

Since a service schema defines which messages a service is able to process, a
schema should also bedomain aligned. An ontology is by definition adomain-aligned
entity, and, therefore, has the potential to supportdomain alignmentof a service if em-
ployed as a service schema.

3 Document-oriented messaging should not be confused with the document-based encoding
style supported by SOAP.

4 A desirable characteristic that facilitates monitoring, recovering after failures, design, imple-
mentation and reuse of services



3.2 Ontology-enabled SOA

In [4] we have proposed Onto⇔SOA as a derivation of the SOA style that assumes a
direct exchange ofdocument-oriented, ontology-basedmessages between a service and
a consumer. We have derived Onto⇔SOA by introducing additional constraints on the
connector and data elements. In Onto⇔SOA we require that an ontology language is
used to express a schema underlying messages. Both a service and its consumer commit
to this underlying ontology. In this paper we will refer to a schema expressed using an
ontology language asa service ontologyor an ontology, for short.

Additionally, we restrict interaction between a service and a consumer to a unified
protocol. A consumer employs an ontology toas completely as possibledescribe a
domain situation (i.e. a problem or case) at hand. This description is sent to a service
that applies its domain knowledge to complete the initial situation with inferred facts
(i.e. the problem solution). Finally, a description of the completed situation is sent back
to a consumer.

An ontology language provides a unified syntax and data model as well asa minimal
set of conceptual primitives. The primitives must be simple andintuitively understand-
ableto the user. We do not require the language to have a well-definedformalsemantics
because in Onto⇔SOA we ground theapplication semanticsin the behavior of a ser-
vice and the user’s understanding of the service domain.

We do not restrict Onto⇔SOA to a certain set ofconceptual primitives. So far, in all
cases we have employedClass - Property - Instanceasconceptual primitives, however,
it should be equally possible to employ otherconceptual primitivessuch asEntity -
Relationsor Subject - Predicate - Objectas long as there is a sufficient consensus about
their meaning.

We distinguish two categories of concepts employed ina service ontology:

1. conceptual primitivesthat provide basic modeling building blocks (e.g.Class -
Property - Instance) not affecting service behavior. The primitives are grounded in
the “real world” and enable interfacing with the user.

2. domain conceptsthat affect service behavior. Theapplication semanticsof domain
conceptsis captured in the behavior of a service. The concepts enable communi-
cation with a service. For a service it is sufficient to be aware ofdomain concepts
only andconceptual primitivessuch asClass - Property - Instanceare not required
to implement a domain-specific task.

In Onto⇔SOA a service ontology may not contain concepts that do not fall under
either of the two categories.

Additionally, an ontology language employed to express a schema must be able
to captureapplication semanticsfor a wide range of domains. If we intend to respect
formal semantics of an ontology language, then the more extensive and restrictive it
is – the more difficult its application in Onto⇔SOA due to a likely conflict between
formal andapplication semantics. For example, since RDFS has much less restrictive
formalsemantics than any language from the OWL-family, the former can be employed
in Onto⇔SOA with less concerns about possible semantic conflicts.



4 Existing Approaches

In Onto⇔SOA we interpret SOA (and a service) in a more restricted way than com-
monly employed in the Web Services and Semantic Web Services fields. In the coming
subsections we outline the main differences between the two interpretations and some
of the implications.

4.1 Web Services

WSDL/SOAP Web Services is the most popular application of SOA on the Web. WSDL
provides a description framework for Web Services and is primarily intended for service
discovery and invocation. SOAP [12] defines a standard way to structure messages that
can be carried over a variety of transport protocols with HTTP being the most frequently
used.

Our interpretation of SOA as an architectural style is more restricted than, but still
compatible with, the broader view on Web Services. We do not assume that any software
component can be transformed into a service regardless of its internal properties and
architectural context (application domain). We require that in order to become a service,
a software component must be sufficiently well aligned with a target service domain.

Web Services in most cases employ the RPC communication style. From the SOA
perspective, RPC introduces an additional dependency between a consumer and a ser-
vice and, therefore, hindersloose couplingbetween these components. This dependency
results from the RPC interaction protocol that requires a consumer to be aware of the
name of the operation, its input arguments, external effects of invocation etc. Further-
more, RPC messages tend to beprescriptiverather thandescriptive. Theprescriptive
nature of RPC Web Services often leads tostateful sessions. This results in fragile in-
teraction protocols and increased dependency between a service and a consumer. The
dependency caused by RPC can be reduced by employing adocument-orientedcom-
munication style which we favor in Onto⇔SOA.

4.2 Semantic Web Services

The state-of-the-art approaches to Semantic Web Services (SWS) [13] such as OWL-
S [1] and WSMO [2] employ ontologies to provideformaldescriptions of Web services
to automate discovery, invocation and composition of such services. One of the main
differences between SWS and Onto⇔SOA is that the former targetsmultiple archi-
tectures (SOAs) whereas the latter addresses asinglearchitecture and a corresponding
domain.

From the Software Architectures perspective, SWS can be seen as a complex con-
nector between a service and its consumer that ensures semantic compatibility of mes-
sages. The connector can perform complex intermediate transformations of a message,
however, a service still operates on data-level requests (SOAP-RPC in most cases) in-
stead of conceptual ontology-based messages. Although the WSMO approach has a
potential to do so, in practice the SWS approaches rarely address direct exchange of
ontology-based messages between processing components in SOA.



In SWS there is a tendency (more visible in OWL-S than in WSMO) to disregard the
actual properties of a service and to assume that any software component can be mod-
elled within a SWS framework adequately well to support the target tasks. This results
in a fairly extensive framework that requires a large amount of meta-data to describe a
service. Moreover, since the internal properties are disregarded, it is difficult to provide
guidelines on how to translate the internal service properties and a corresponding SWS
model into each other: how to design a service or provide a meta-data description for
an existing one.

In Onto⇔SOA we focus on the invocation task only. By means of the SOA style we
constrain the internal properties of a service to induce thedomain alignmentandloose
coupling characteristics. This simplifies the model of a service, reduces the amount
of meta-data required to describe it and provides guidelines on design of Onto⇔SOA
services.

5 Onto⇔SOA Solution for Document Retrieval Case

In [5] we have introducedMoRe– a derivation, supported by a prototype implemen-
tation, of Onto⇔SOA. It combines the RDF/S languages with the elements of REST
services. We employMoReto evaluate Onto⇔SOA and provide a simple, yet efficient
framework for ontology-enabled application development.

In this section we describe aMoRe-based solution for the Document Retrieval case
introduced in Sec. 2. The solution consists of aMoRe-based service5 and a demon-
stration application6. In coming sections we elaborate on the design of two major
Onto⇔SOA artifacts: the service (Sec. 5.1) and the service ontology (Sec. 5.2).

5.1 Document Retrieval Service

By applying the Onto⇔SOA constraints to the Document Retrieval architecture shown
in Fig. 1 we determine that none of the components is properly aligned to the Document
Retrieval domain defined in Sec. 2. The IndexWriter and IndexSearcher components
requirean index identifier– a concept absent from the Document Retrieval domain.
Neither the Parser nor Analyzer components perform functions directly related to the
Document Retrieval domain. Moreover, the components are of the same granularity and
depend on other components. This does not allow us to distinguish a single,omnipotent
component among them. To find documents matching a given query the user has to fol-
low a rather complex interaction protocol that is likely to require astateful session: the
user has to maintain the index and the analyzer identities across component invocations,
and must properly order invocations.

We could disregard the Onto⇔SOA constraints and design an architecture in which
each of the components is transformed into a service by merely providing a Web-
enabled interface to them. The misalignment between these components and the Doc-
ument Retrieval domain would, however, cause a service schema to expose concepts

5 http://swpc333.cs.vu.nl:8080/DRDemo/pages/Service.jsp
6 http://swpc333.cs.vu.nl:8080/DRDemo/pages/DescribeProblem.jsp



(index, analyzer, parser etc) alien to the target Document Retrieval domain. The non-
aligned concepts forced on a consumer unnecessarily complicate the document retrieval
task and, ultimately, compromiseloose couplingby exposing implementation details.

In particular, we consider an index

Fig. 3.Document Retrieval case: an architec-
ture with a Facade object that encapsulates
the architecture depicted on Fig. 1.

to be an implementation detail irrele-
vant to the functionality of the Docu-
ment Retrieval service. The solenon-
functionalpurpose of an index is to con-
tain pre-computed data to improve the
performance of the retrieval process. Even
if an index contains data relevant to a
consumer (e.g. term frequencies), the
associated functionality (computation of
frequencies) should be exposed rather
than the way the data is stored (an in-
dex). Moreover, if we decide to expose
this additional functionality then the ser-
vice domain must be redefined accord-
ingly to include the concepts of term
and document frequencies. This effec-
tively results in an application domain distinct from the domain defined in Sec. 2 and,
therefore, in a new SOA.

To fulfill the Onto⇔SOA constraints we extend the original architecture for the
Document Retrieval system. To provide adomain-alignedinterface, we employ a Fa-
cade object [14] that confronts the user with the concepts from the Document Retrieval
application domain only, while hiding the peculiarities of the Lucene’s approach to
document retrieval (Fig. 3).

The Document Retriever Facade object fulfills the SOA constraints. The object is
well aligned to the target domain. Its interface exposes only concepts that occur in
the Document Retrieval domain. It is the mostcoarsely-grainedcomponent consisting
of a number of finer-grained components (IndexWriter, Analyzer etc). The object is
omnipotent: it does not depend on other components of the same level of granularity.
It does not require astateful session. Since neither the index nor Analyzer concepts are
exposed, there is no need to maintain their identities across service invocations.

We employ theMoRe framework to transform the Facade object into adomain-
aligned, session-stateless, omnipotentanddocument-orientedservice. The service ac-
cepts an RDF description of an instance of the Document Retrieval case and returns
another RDF document with a solution. The terminology for both types of documents
is defined in the Document Retrievalservice ontologyexpressed in RDFS.

5.2 Document Retrieval Service Ontology

The Document Retrieval service ontology is a specification of the Document Retrieval
domain. The Document Retrieval service defines how a particular domain model (an
instance of the Document Retrieval case) must be interpreted by a machine: the service
must compute a solution for an instance of the Document Retrieval case. To describe



an instance of the Document Retrieval case and a corresponding solution we introduce
a number of RDFS Classes and Properties summarized in Fig. 4.

Concept Description Provided by

DocumentRetrievalCase class the top-level container for the Document Retrieval domainconsumer
– hasCorpus property points to a document corpus consumer
– hasQuery property points to a query to be matched against documents consumer
– hasSolution property points to a solution to a DR problem service

Corpus class contains a set of documents consumer
– containsDocument property points to a document that belongs to this corpus consumer

Query class represents a query consumer
– hasQueryString property contains a literal value with a query consumer

Document class consumer
– hasURL property contains an URL of a document consumer

Solution class contains a collection of documents that match the given queryservice
– hasRetrievedDocumen points to a retrieved document that belongs to a solutionservice

RetrievedDocument class represents a matched document service
– hasDocument points to a document from the problem Corpus service
– hasScore contains match score for the retrieved document service

Fig. 4.The Document Retrieval service ontology.

The Document Retrieval service ontology is aligned to the Document Retrieval
problem domain: all concepts introduced by the ontology can be readily found in the
original domain definition. In this way we expect to improve the usability of the service
by bridging the conceptual gap between a consumer’s view on the service domain (this
was the basis for the definition of the Document Retrieval domain in the first place) and
functionality provided by the service.

The Document Retrieval service ontology provides the terminology required by a
consumer to express an instance of the Document Retrieval case (Fig. 5): a corpus con-
sisting of a collection of documents and a text query. The ontology is also employed by
the service to express the solution to the case (Fig. 5): a collection of ranked documents
that match the query. The solution document contains what can be seen as facts inferred
by the service from the original description of the case.

5.3 Implementation

Fig. 6 outlines the main processing steps taking place inside an Onto⇔SOA service and
a consumer. Fig. 7 illustrates the processing steps typical for a Web service implemen-
tation enabling us to compare the two approaches.

The process cycle of the Document Retrieval service, and more generally of an
Onto⇔SOA service and a consumer, consists of the following steps.

1. The service receives an RDF document containing a description of the Docu-
ment Retrieval problem. The document is expressed using terms from the Document
Retrieval service ontology and serialized in the RDF-XML syntax. We refer to such
RDF-XML serialization as anexternal conceptual model. Fig. 5 contains an example
of anexternal conceptual modelof an instance of the Document Retrieval problem.



-DRProblem
type DocumentRetrievalProblem
hasQuery aQuery
hasCorpus aCorpus

-aQuery
type Query
hasQueryString ‘‘Onto-SOA’’

-aCorpus
type Corpus
containsDocument document1
containsDocument document2
containsDocument document3

-document1
type Document
hasURL ‘‘.../˜maksym’’

-ppdocument2
type Document
hasURL ‘‘.../Onto-SOA-WEBSA.pdf’’

-document3
type Document
hasURL ‘‘.../OntologiesAndQualities.pdf’’

-DRProblem
hasSolution aSolution

-aSolution
type Solution
hasRetrievedDocument rDocument1
hasRetrievedDocument rDocument2

-rDocument1
type RetrievedDocument
hasDocument document1
hasScore 0.65255654

-rDocument2
type RetrievedDocument
hasDocument document2
hasScore 0.9764538

Fig. 5. An example of a Document Retrieval problem description (left-hand side) and a corre-
sponding solution (right-hand side).

Fig. 6.The Onto⇔SOA process cycle. In parenthesis we refer to a specific technology employed
in the Document Retrieval service and demo application.



2. The received RDF-XML document must be parsed and converted by the service
into aninternal conceptual modelto enable programmatic access to its content. In the
Document Retrieval service we employ the in-memory RDF model provided by Jena
API [15]. A database-backed model can also be employed as long as the RDF API
of choice supports it. Theinternal andexternal conceptual modelsare equivalent and,
therefore, we can automatically transform them into each other by means of Jena API.
Both conceptual models aredomain alignedbecause this characteristic is enforced in
Onto⇔SOA.

3. The in-memory RDF model of an instance of the Document Retrieval case is
linked to aninternal domain model(internal model, for short) of the service implemen-
tation. Theinternal domain modelmust be computationally feasible and, consequently,
is effected by suchnon-domain-alignedfactors as an implementation language (Java),
available APIs (Lucene), non-functional requirements (performance, security etc) and
the algorithms employed. Theconceptualand internal domain modelsin most cases
are not equivalent because the latter is effected by the factor listed above, whereas the
former is not. The mapping between the two models (the Document Retrieval service
ontology and the Java OO model of the Document Retrieval service implementation)
cannot be determined automatically.

4. The Document Retrieval service logic (based on the Lucene API) is applied to
the internal modelof the Document Retrieval case. A solution to the case extends the
internal modelwhich then undergoes the above steps in reverse order. The process
cycle results in anexternal conceptual modelof the solution sent to a consumer. Fig. 5
displays an example of such an extended model. A consumer then follows steps 1-3 to
interpret the response, and reverses the order of steps to invoke a service.

Generally speaking, theinternal modelsof a consumer and a service are different. In
the Document Retrieval demonstration application, theinternal modelis very thin. The
user’s actions are translated almost directly into theconceptual model. The overhead
of generality of aconceptual modelcan be ignored. At the same time, the Document
Retrieval service cannot ignore the overhead because it must be able to efficiently han-
dle multiple Document Retrieval requests, and therefore, requires an optimizedinternal
model.

An internal modelcan be reduced by implementing application logic to operate
as directly as possible over aconceptual model. Ontology middleware (query lan-
guages, inference engines, rule languages etc) simplifies the use ofconceptual mod-
els from within application logic. For example, by means of a query language (e.g.
SPARQL [16]) RDF/S models can be processed in a rather efficient way directly from
application logic. However, an application-specificinternal modelstill offers better per-
formance. Additionally, even in the case of advanced ontology-aware middleware it is
possible that aninternal domain modelis not reduced but rather transferred from a
programming language to an ontology query language.

To reduce the possibility of mis-alignment betweenconceptualandinternal models
a direct operation over aconceptual modelshould be preferred. If this is impossible
because of performance considerations, then a direct operation can be approximated
with intermediate coarse updates to theconceptual model. The discrete updates allow to
validate intermediate computational states against adomain-aligned conceptual model.



Fig. 7.Outline of the Web Services processing cycle.

In Web Services (Fig. 7) the communication between a consumer and a service takes
place on the data level. At the service side an external data model (XML data-type def-
initions) is automatically generated from aninternal modelby means of programming
language-specific Web Service middleware (e.g. Apache Axis7, Java EE Web Service
tools 8). At the consumer side the XML data-type definitions contained in a WSDL
description of a service are used to automatically generate aninternal stub model. This
model is then connected to a consumer’sinternal model. Sinceconceptual modelsare
not explicitly present in Web Services, the conceptual gap exists between theinternal
modelsof the service and the consumer.

In SWS an ontology provides a model of a Web service. Sincedomain alignmentis
not enforced in Web Services, the ontology is likely to address implementation details
of the service rather than theconceptual model, thus, compromising thedomain align-
mentandloose couplingcharacteristics. Onto⇔SOA addresses the potential conceptual
mis-alignment between a service and its consumer by explicitly introducingconceptual
modelsinto their processing cycle.

6 Conclusions

We have describedOnto⇔SOA– a framework that integrates ontologies and Service-
Oriented Architectures.Onto⇔SOAenables a direct exchange of ontology-based mes-
sages between a service and its consumer. In the proposed framework we interpret SOA
as anarchitectural stylethat constrains internal properties of a service to inducedomain
alignmentandloose couplingcharacteristics. We enhance these characteristics by em-
ploying an ontology as aservice schema. This introduces an explicitconceptual domain
model into a service and a consumer facilitating conceptual interoperability between
them. By constraining the notion of a service we simplify its model, reduce the amount

7 http://ws.apache.org/axis/
8 http://java.sun.com/webservices/



of meta-data required to describe it and provide guidelines on design of Onto⇔SOA
services. We have elaborated on anOnto⇔SOA-based design and implementation of a
service for the document retrieval task and outlined the differences between the pro-
posed approach and Semantic Web Services.

7 Acknowledgements

We would like to thank Jacek Kopecky and Borys Omelayenko for their invaluable
suggestions, comments and criticism that helped us to improve this paper.

References

1. W3C: OWL-S: Semantic Markup for Web Services. (http://www.w3.org)
2. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology1 (2005)
77–106

3. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes17 (1992) 40–52

4. Korotkiy, M., Top, J.: Onto-SOA: From Ontology-enabled SOA to Service-enabled Ontolo-
gies. In: International Conference on Internet and Web Application and Services (ICIW’06).
Guadeloupe. (2006)

5. Korotkiy, M., Top, J.: MoRe Semantic Web Applications. In: Proceedings of the ESWC’05
workshop on User Aspects of the Semantic Web. (2005)

6. Baida, Z., Gordijn, J., Omelayenko, B., Akkermans, H.: A shared service terminology for
online service provisioning. In: Proceedings of the Sixth International Conference on Elec-
tronic Commerce (ICEC04), ACM Press (2004)

7. Hotle, M.: A conceptual evolution: From process to web services. Gartner Group Research
Note TU-16-1420 (2003)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, UNIVERSITY OF CALIFORNIA (2005)

9. Shaw, M., Clements, P.C.: A field guide to boxology: Preliminary classification of architec-
tural styles for software systems. In: COMPSAC ’97: Proceedings of the 21st International
Computer Software and Applications Conference, Washington, DC, USA, IEEE Computer
Society (1997) 6–13

10. W3C: RDF Semantics. (http://www.w3.org/TR/rdf-mt/)
11. W3C: RDF Vocabulary Description Language 1.0: RDF Schema. (www.w3.org)
12. W3C: Web Services: Recommendations, Specifications and Documents (WSDL, SOAP,

etc). (http://www.w3.org/2002/ws)
13. Cabral, L., Domingue, J., et al: Approaches to semantic web services: an overview and

comparisons. In Bussler, C., Davies, J., Fensel, D., Studer, R., eds.: ESWS. Volume 3053 of
Lecture Notes in Computer Science., Springer (2004) 225–239

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns : Elements of Reusable
Object-Oriented Software. Addison Wesley (1995)

15. HP Labs Semantic Web Activity: Jena Semantic Web Toolkit.
(http://www.hpl.hp.com/semweb/)

16. W3C: SPARQL Query Language for RDF. W3C Candidate Recommendation.
(http://www.w3.org/TR/rdf-sparql-query/)


