
Semantic Models for XML Schema with UML Tooling 

David A Carlson1 

 
1 David Carlson & Associates, Inc. 

71 White Swan Ct., 
Kalispell, MT 59901 USA 

www.XMLmodeling.com 
dcarlson@xmlmodeling.com

Abstract. Design and use of XML Schemas are essential tasks in the software 
engineering process for many systems, but duplication and different naming and design 
rules in these schemas are major roadblocks for systems integration. An ontology-driven 
design approach is described that uses semantic models during the creation and 
management of XML schema vocabularies. UML models are used for model-driven 
design of schemas and semantic annotations are used to associate UML elements with 
OWL concepts. Specific examples from financial services industry schemas illustrate the 
issues and benefits of semantic integration. A design tool named hyperModel implements 
some of these modeling activities and enables editing and browsing both UML models 
and OWL ontologies with a common interface of dynamically created class diagrams. 

Keywords: UML, OWL, XML Schema, XSD, Modeling, Eclipse, Financial Services, 
FpML. 

1   Introduction 

Design and use of XML Schemas are essential tasks in the software engineering process for 
many systems. The importance of schemas is not limited to those organizations that embrace 
Service Oriented Architecture (SOA), but they are integral to the service contract of all 
applications and organizations that exchange information using XML documents. However, 
the relative ease of writing XML Schemas is both a blessing and a curse; we now have 
hundreds of schemas written by industry associations, IT departments, and individual 
developers. Semantic models may be the key to managing and integrating these XML 
vocabularies and making them part of a unified software engineering architecture. 

A Semantic model is an ontology that represents a formal explicit description of a domain. 
In contrast to XML Schemas that define types based on syntax and structure, ontologies define 
classes as sets of individuals that satisfy required axioms. Ontologies range from simple 
taxonomies to deep knowledge about subjects such as medicine and chemistry. The recent 
adoption of the Web Ontology Language (OWL) by the W3C [12] is an important step in 
bringing the use of ontologies into Internet-oriented distributed systems. 

Others have written about Ontology Driven Architecture and its potential for raising 
productivity of system integration [10]. The research described in this article focuses on the 
role of ontology in designing and deploying XML vocabularies. We propose that ontology-
driven development of XML Schemas will lead to improved reuse and faster, higher quality 
integration. We also apply concepts and tooling from Model Driven Architecture (MDA) by 

 

mailto:dcarlson@xmlmodeling.com


using UML models as the platform for visualizing and integrating XML Schema and OWL 
ontologies. 

Specific examples from the financial services domain are used to illustrate: 
 

• Designing and visualizing both XML Schemas and OWL ontologies using UML class 
diagrams. 

• Assigning semantic annotations (OWL references) at design time in UML. 
• Generating semantic annotations into XML Schema definitions. 
• Semantic classification, discovery, and validation of models and XML instances. 
• Integration of all these activities within a design workbench, named hyperModel, that is 

implemented in the Eclipse IDE platform. 
 
Section 2 describes the use and benefit of semantic models applied to the design and 

management of XML Schemas. Section 3 introduces specific examples from the financial 
services domain. Section 4 describes hyperModel, an integrated tool for ontology-driven 
development. All processing of OWL ontologies in hyperModel is supported by the Eclipse 
EODM open-source project. The EMF Ontology Definition Metamodel (EODM) is an 
implementation of RDF(S)/OWL metamodels from the OMG’s Ontology Definition 
Metamodel (ODM) using the Eclipse Modeling Framework (EMF) [11][4]. 

2   Semantic Models for XML Vocabularies 

XML vocabularies are usually specified using XML Schemas. However, the schema language 
is limited to basic structural descriptions and, while focusing on the schema language 
expressions, developers often lose sight of the more important goal: creating a robust 
vocabulary for communicating between applications and organizations. The Unified Modeling 
Language (UML) can be used to overcome many of these limitations when designing XML 
vocabularies. By placing emphasis on the information model and visualizing the models using 
class diagrams, designers and business users are able to focus on the content instead of the 
syntax. 

The UML also has benefits while designing OWL ontologies and when associating OWL 
concepts with XML Schema structures. The class diagrams provide a common visual 
presentation of schema structures and ontology concepts, and the shared language enables the 
linkage of semantics and implementation in a unified tool environment. 

2.1   Modeling XML Vocabularies 

Using UML for modeling the design of XML applications and generating XML Schemas [1] 
has been applied in production systems development for more than five years. A principal goal 
of this work is to build libraries of reusable business components that can be shared across 
applications and communicated with end-users via UML class diagrams. 

Whenever possible, the constructs of XML Schema are mapped to corresponding elements 
in the UML. A profile of stereotypes is used to extend the UML for schema-specific 
definitions, for example to differentiate between elements and attributes in complexType 
definitions. This profile is applied when importing XML Schemas into UML and when 

 



generating schemas from a UML model. This mapping to UML is important because we 
associate OWL semantics with XML Schema structures contained in a UML model. 

Ideally, all schemas would be designed using a model-driven methodology starting from the 
UML. However, the most common starting point is to import industry standard schemas into a 
UML model and bootstrap the vocabulary library with these component definitions. Then new 
schemas or company-specific extensions can be modeled using these components and 
generated to new schema implementations. As described later in this article, semantic models 
can be used to improve this development process, particularly when applied across 
organizations and trading partners. 

Visualization of schema structures during design, and especially when imported from 
existing schemas, is an important benefit of UML. Many developers find significant benefit in 
this visualization even when not using a model-driven methodology for design. A good 
example of importing a UML model from a complex schema is provided by the Financial 
Products Markup Language (FpML) [7]. Figure 1 shows a class diagram produced from a 
small part of this model. 

 

 

Fig. 1. UML class diagram for model imported from the Financial Products Markup Language (FpML). 

A related effort to separate the design of business components from their XML Schema 
syntax is the UN/CEFECT Core Components Technical Specification (CCTS) [2]. The CCTS 
defines its components using object class terms, property terms, representation terms, and 
qualifiers that distinguish uses of a term. This component naming convention is based on the 
ISO 11179 Metadata Registry specifications. CCTS defines a metamodel for core components 
that is independent of UML, but work is now underway to create a UML profile that allows 
these components to be defined using UML tools. 

 



The development of component libraries based on CCTS is still in early stages. In all usage 
that we have seen thus far, the object class and property terms are assigned as part of 
component naming, but no taxonomy or ontology of the terms themselves is constructed. 
Semantic models can provide benefits for CCTS similar to those described in this article for 
UML and OWL ontologies. 

2.2   Web Ontology Language (OWL) 

The Web Ontology Language OWL is a semantic markup language for publishing and sharing 
ontologies on the World Wide Web [12]. In ontologies, the logical relationships are made 
explicit through OWL class definitions and other formal statements. This not only makes it 
easier for other human users of models to understand the specifically intended meaning, but 
also means that other tools can use the definitions transparently. An ontology differs from an 
XML Schema in that it is a knowledge representation, not a message format. 

Ontology is a term borrowed from philosophy that refers to the science of describing the 
kinds of entities in the world and how they are related. An OWL ontology may include 
descriptions of classes, properties and their instances. An OWL restriction describes the class 
of all instances that fulfill a specific condition on a property. The key power of OWL is that 
classes can be defined by combining multiple restrictions and other classes. For that purpose, 
OWL provides logical operands to build intersections (and), unions (or) and complements 
(not) of other classes [16]. 

Work is underway to define an Ontology Definition Metamodel (ODM), plus a UML 
profile and mapping between OWL and UML [11]. Through this UML mapping, we can create 
class diagrams of OWL ontologies in a standardized notation. As part of the research described 
in this article, we have created a prototype application that renders class diagrams directly 
from OWL, without actually transforming the ontologies into UML models. We intend to align 
this notation with the ODM specification after it is finalized. 

The class diagram shown in Figure 2 illustrates part of an ontology about food and wine that 
is described in the OWL Guide [12]. In it, we can easily see that a Wine must be made from 
one or more WineGrapes, which are kinds of SweetFruit. And SweetRiesling is a kind of wine 
that is an intersection of Riesling and DessertWine. This intersection class also defines other 
restrictions on the property values for hasFlavor, hasBody, and hasSugar. Thus, SweetRiesling 
is not a structural type definition as in XML Schema, but it is a semantic definition of what it 
means to be a sweet Riesling wine and how this wine differs from other kinds of wine. 

Applications can exploit other tools to handle and analyze OWL models. One family of 
such tools is called reasoners. A reasoner is a service that takes the statements encoded 
(asserted) in an ontology as input and derives (infers) new statements from them. In particular, 
OWL reasoners can be used to: 

• Reveal subclass/superclass relationships among classes  
• Determine the most specific types of individuals  
• Detect inconsistent class definitions  

 
OWL reasoners are based on Description Logics (DL), which is a field of research that has 

studied a particular subset of first order logic that is proven to be computationally feasible for 
practical reasoning systems. One popular OWL reasoner, called Pellet, has an open-source 
Java implementation and is integrated with several OWL design tools [13]. 

 

 



 

Fig. 2. Class diagram view of an ontology about food and wine. 

As described in the following sections, we can use OWL ontologies and DL reasoners to 
assist design time activities while modeling XML Schemas, and runtime semantic validation 
and mapping of XML messages. 

2.3   Semantic Annotations 

A standard mechanism is needed for associating semantic concepts with their realization in 
UML models, XML Schema types, and Web Service interfaces. The W3C Semantic 
Annotations for WSDL (SAWSDL) specification defines how to add annotations to XML 
Schema and WSDL components that refer to concepts defined in an ontology [14]. It also 
defines an annotation mechanism for specifying the structural mapping of XML Schema types 
to and from an ontology. In SAWSDL, these semantic annotations are implemented as XML 
attributes added to definitions in WSDL services or XML Schemas. 

This specification emphasizes Web Service definitions, but it also includes annotations that 
can be applied to XML Schema definitions that are used without the services. This article 
describes how these semantic annotations are used in both XML Schemas and in UML models 
of those schemas to bind their definitions to a semantic model. 

2.4   Benefits of Ontology and XML Schema 

XML Schemas and OWL ontologies are useful on their own, but additional benefits are 
possible when using them in combination. These benefits are realized during design time while 

 



creating schemas and at runtime when exchanging XML documents in service-oriented 
systems. 

Semantic Classification. XML Schemas and their instances may be classified into taxonomic 
hierarchies defined by concepts in one or more ontologies. These taxonomic categories can be 
specified as either primitive or defined concepts. Primitive concepts can be used in a model to 
represent classes of individuals that users are expected to be able to classify naturally. Defined 
concepts can be used in a model to represent subclasses of the primitive ones that the system 
will be able to classify if needed [8]. For example, financial assets might be explicitly 
classified into primitive concepts for Cash, Bond, or Equity, whereas any schema type that 
includes a postal code property is classified as a kind of defined concept named PostalAddress. 

Classification of complexType and simpleType schema definitions will assist in 
establishing equality or subsumption relationships between definitions from different schemas. 
For example, related kinds of addresses (postal, email, geographical coordinates), parties 
(individual, organization, government), and financial assets (cash, bond, equity) are inferred 
using an OWL reasoner. Existing schemas have many ways of defining and naming address 
structures, but all of these types can be classified as kinds of Address. 

Message or Component Discovery and Reuse. One of the primary benefits of schema type 
classification is to assist designers in discovering and reusing existing components from XML 
vocabulary libraries. Concept discovery mechanisms are among the common benefits of using 
ontologies and description logics [8]. 

One of the principal reasons for work on industry standards such as the Universal Business 
Language (UBL) and the UN/CEFACT Core Components [2] is to enable reuse and easier 
integration of business systems. Those specifications describe component repositories and 
associated component metadata that will assist discovery. Use of domain ontologies with these 
vocabulary repositories may significantly improve the ability to achieve their goals. 

Unify XML Naming and Design Rules. Many companies and standards groups create a 
Naming and Design Rules (NDR) specification that requires very specific styles for all XML 
Schema definitions [9]. Several of these specifications are related to work originating at 
OASIS, but there are significant differences between NDRs. Some NDRs require that XML 
Schema elements use short truncated names to reduce the size of XML documents in high 
volume transaction systems or when the XML vocabularies were based on older EDI systems. 
For example, CxlRegRsn is used instead of CancellationRejectReason (in FIX financial 
schemas), or types are named CE, CD, and ED (in HL7 healthcare schemas). Such XML 
vocabulary names carry little human readable meaning for someone who is not intimately 
familiar with these particular standards. 

Semantic models can be used to associate shared concepts with these vocabulary terms. The 
ontology concepts enable translation of specialized NDR naming standards to a business 
terminology that is both human readable and machine processable by other applications. 

 



Semantic Validation of Messages. Semantic classification also has benefits for runtime 
validation of XML messages in service oriented systems. Message validation using XML 
Schemas is limited to simple structural integrity, and that validation is often limited by 
schemas that define most content as optional. Alternatively, business rules for semantic 
validation might require that all XML message components that are a kind of Party must 
include a kind of Address somewhere in their content. This form of semantic validation rule 
would be written with reference to the ontological concepts and thus applied to any XML 
messages whose content can be classified into those concepts. 

Mapping Between Message Vocabularies. Given the proliferation of XML Schemas, often 
containing very similar information, it is sometimes necessary to transform XML document 
instances from one schema to another. This involves mapping element names, changing 
structure, and transforming content values (e.g. format of dates or units of measure). 

When the types in each schema are associated with shared semantic models, then the 
mapping rules can be written in terms of the semantic content of messages and not limited to 
simply mapping element names between each alternative schema [15]. This kind of semantic 
mapping is one of the primary goals of the W3C Semantic Annotations for WSDL 
specification [14]. 

3   Financial Services Example 

We have applied UML model-driven design techniques to XML vocabularies from many 
industries, including banking, healthcare, manufacturing supply chain, and others. Based on 
that experience, we believe that the financial services industry is an especially good domain for 
applying semantic models to realize the benefits outlined in Section 2.4. Financial transactions 
depend on precise description of complex instruments, and there are a number of XML 
messaging standards that contain similar concepts that have been implemented with different 
XML naming and design rules. 

Four examples of financial industry standards are: 
 

• Financial Information eXchange (FIX) Protocol: Messaging standard for the real-time 
electronic exchange of securities transactions. 

• Financial products Markup Language (FpML): XML specification for swaps, 
derivatives, and structured financial products. 

• Interactive Financial Exchange (IFX): XML specification for electronic bill presentment 
and payment, business to business payments, business to business banking (such as balance 
and transaction reporting, remittance information), automated teller machine 
communications, consumer to business payments, and consumer to business banking. 

• Market Data Definition Language (MDDL): XML specification for exchanging data 
necessary to account for, analyze, and trade financial instruments. MDDL defines common 
terms that provide a standard vocabulary so market data may be exchanged unambiguously 
between exchanges, vendors, redistributors, and subscribers. 
 
It is possible to automate the transformation of these XML Schemas into OWL ontologies, 

but this would lead to a fragmented, suboptimal ontology design. We would end up with four 
ontologies that recreate the same independent descriptions using a different language. Instead, 

 



we need to identify and describe the essential concepts used in these vocabularies and then 
associate the message terms from each schema into a common semantic model. 

We have only just begun to design this ontology and cannot report results in this paper. Our 
strategy for creating the ontology is as follows: 

 
1. Harvest key concepts from the schema definitions while looking for reusable abstract types 

and terms. The FpML schema is especially good in this regard. See for example the schema 
class diagram shown in Figure 1, where general types are defined for schedules and date 
intervals. These may yield a useful ontology of scheduling concepts needed to describe 
financial transactions. Similarly, FpML includes a generalization hierarchy for kinds of 
financial assets, although these are limited to the scope of messages included by FpML. 

2. Organize an upper ontology of basic concepts that can be used to classify the terms used in 
each schema. We initially defined concepts for Party, PartyRole, ContactPoint, Asset, and 
Trade. Then the primitive and defined subclasses are chosen to describe the types used in 
these messaging standards. 

3. Focus on the essential semantics that can be used to differentiate and classify terms used in 
these schemas. Don’t attempt to duplicate all elements and types used in each schema. 
Identify the properties and restrictions that define a term and distinguish it from other 
related terms, as opposed to the many informative elements and operational data contained 
in large XML schemas. 

4. Define ontology concept names using common industry terminology. In particular, don’t 
use schema element naming that is based on implementation concerns such as the FIX 
element name truncation (e.g. CxlRegRsn is used instead of CancellationRejectReason). 
The resulting ontology and semantic annotations will provide a translation of FIX element 
names to more meaningful terminology. 

4   hyperModel Tool Implementation 

The hyperModel design tool has been under development and in active use for five years. Until 
now, its focus has been on model-driven design and visualization of XML Schemas, and bi-
directional transformation between XML Schema and UML models. hyperModel is now being 
extended with a proof-of-concept implementation for OWL modeling, semantic annotations of 
UML models and XML schemas, and semantic classification of model elements.  

The design objectives of hyperModel are: 
 

• Use Eclipse Modeling Framework (EMF) for model-driven design 
• Metamodels defined by current industry standards: UML 2.1, OWL, and XML Schema 

• Common UML style interface for viewing and editing UML and OWL models 
• Visualization of large models using an interactive browsing metaphor with class diagrams 
• UML profile for semantic annotations that bridge UML and OWL models 
• Wizard-driven transformations for importing XSD into UML models and generating XSD 

from UML, including support for semantic annotations 

 



4.1   Metamodels for UML2, OWL, and XML Schema 

Eclipse provides open-source implementations of these three metamodels, where all use EMF 
Ecore as their meta-metamodel. EMF Ecore is aligned with the OMG standard Essential MOF 
(EMOF) and provides complete and robust Java implementations generated from Ecore 
models. Because the UML2, OWL, and XSD metamodels are all based on Ecore, they share a 
common model reflection API and a growing library of Eclipse tools that support any Ecore 
model. 

The Eclipse UML2 and XSD metamodels are already used in several large vendor 
commercial products, so they are complete, robust, and well supported by the Eclipse 
community. All processing of OWL ontologies in hyperModel is supported by the Eclipse 
EODM open-source project [4]. The EMF Ontology Definition Metamodel (EODM) is an 
implementation of RDF(S)/OWL metamodels from the OMG’s Ontology Definition 
Metamodel (ODM) with additional support for parsing, inference, model transformation, and 
editing. The EODM project is still maturing and the ODM specification was voted for adoption 
just prior to this article’s publication, but its common basis in EMF Ecore enables rapid 
integration with other EMF models in the hyperModel design tool. 

4.2   UML Style Interface 

There are dozens of UML tools available and they are in common use by many developers. As 
a result, many users are familiar with the basic style of editing UML models using a tree view 
of the model’s packages, classes, and attributes, plus a class diagram for visualizing and/or 
editing a model. hyperModel is able to open and edit any UML model that is compatible with 
the Eclipse UML2 metamodel implementation [5]. 

On the other hand, OWL models and OWL editing tools use specialized notation and 
terminology that are unfamiliar to most developers. With hyperModel we are exploring the 
idea of viewing and editing a subset of OWL ontology definitions using a familiar UML style 
interface, while still working on a native OWL model and representation, i.e. without actually 
translating the ontology into a UML model. A UML style presentation is applied to an OWL 
model. When a user familiar with OWL wants to edit more advanced definitions, he/she can 
drop down into a complete native OWL editing environment integrated within the same tool 
and editing the same model instance. 

The screen in Figure 3 shows the Model Explorer view where any combination of UML 
models and/or OWL ontologies may be opened simultaneously. In this example, we are 
browsing a UML model of the FpML messaging standard that was imported from XML 
schemas, plus on OWL ontology is open along with two standard data type libraries. 

The class diagram is created dynamically by selecting one or more classes in the Model 
Explorer, or by double-clicking on a class in a larger diagram to drill-down into a more 
specific subset. We refer to these dynamic diagrams as dynagrams. For large class diagrams, 
the toolbar includes options for controlling the depth and breadth of expansion while following 
model associations and laying out the diagram. The editor includes a history of recent diagram 
views and back/forward arrows so that you can explore a large model with a browser-like 
style. The diagrams shown in Figures 1 and 2 were also created in this view and then saved to 
PNG files. 

The tabbed Properties view below the diagram can be used to display or edit properties of 
the current selection in either the class diagram or the Model Explorer. Another view is under 

 



development, not shown here, where a user can examine and navigate the class inheritance 
hierarchy of any class selected in the Model Explorer or class diagram. 

 

 

Fig. 3. hyperModel Designer showing a UML model imported from FpML schemas. 

The objective of hyperModel is to provide a common user interface style when working 
with either UML or OWL models. Figure 4 shows a screen while editing the EBusiness.owl 
ontology definitions. This is a very simple ontology but it illustrates the same use of Model 
Explorer, class diagram, and Properties views. The UML style presentation in the Model 
Explorer view is still under development, but you can see how we include an OWL property 
definition under the class(es) that are in the property’s domain (under Party). We also include 
property restrictions under other defined classes, where the property is shown with its 
narrowed definition (e.g. restrictions on cardinality, type, or value). This presentation of 
restrictions has a valid interpretation in the UML2 specification where it is called a property 
redefinition. But to reemphasize, this presentation of OWL is only a rendering of the native 
OWL definitions and not a transformation into a UML model. More advanced OWL 
definitions that are not easily mapped into UML are preserved, even if they are not shown in 
this UML style view. 

 

 



 

Fig. 4. hyperModel class diagram for a simple e-Business OWL ontology. 

For users who want to see the native OWL perspective, the Model Explorer lists all property 
definitions under a “Properties” folder, seen at the bottom of the explorer view in Figure 4. 
Similarly, OWL individuals are listed in the explorer. When completed, this tool will include 
an OWL tab in the Properties view where all details of an OWL definition can be seen, 
created, and edited. 

The OWL class diagrams are also rendered directly from the ontology definitions and, as 
with the UML model diagrams, are created dynamically while exploring concepts in an 
ontology. We will align the class diagram notation with that defined in the ODM specification, 
including stereotypes and tags on the classes and properties [11]. Other research on using 
UML diagrams with OWL predates the ODM specification [17, 18] and influenced the 
standard UML mapping and profile stereotypes in ODM. hyperModel follows a similar 
approach as described by this prior work, but extends it with dynamic diagrams and UML style 
presentation of native OWL definitions. 

We added one enhancement over UML notation described in the prior work by using a 
notational convention for displaying partial cardinality restrictions on properties. For example, 
as seen in the Riesling class in Figure 2, the ‘madeFromGrape’ property is a restriction on the 
same property as defined for its superclass Wine, but only the maximum cardinality is 
restricted to 1. We could show the effective restriction on this property, which is 1..1 because 
the inherited property is 1..*. But for an ontology designer looking only at this class, it would 

 



not be clear where each restriction is declared.  We display the UML class diagram with 
property multiplicity of ‘[_..1]’ to signify that only the maximum cardinality is restricted and 
the underscore indicates that the minimum cardinality is inherited. Also, we show a restricted 
object property within the class attribute partition (instead of as an association) to avoid 
diagram clutter and also as a hint that it is restricted from an inherited property. 

The class hierarchy view (not shown) will present a class subsumption hierarchy for a 
selected OWL concept. As with other OWL views, it is rendered directly from the OWL model 
using APIs from EODM. However, unlike the class hierarchy view of a UML model, the OWL 
view shows a class subsumption hierarchy inferred by an associated DL reasoner. This kind of 
class subsumption view is common with all ontology modeling tools and hyperModel will 
allow configuration and choice of several alternative reasoners. 

A hyperModel user can move easily between any number of UML and OWL models that 
are open in the explorer. While editing a UML model, all classes in all open models are 
available when creating associations, so you can integrate a design that is divided across 
several model files. We are currently working on providing this same modularity for linking 
references across OWL ontologies and for creating semantic annotations that bridge UML 
elements to OWL concepts. 

4.3   Semantic Annotations 

To model the semantic references from UML elements to OWL concepts, we implemented a 
small UML profile with one stereotype that allows this information to be captured in a UML 
model extension. This profile is based on the W3C Semantic Annotations for WSDL 
specification that was described in Section 2.3. These semantic annotations can be created and 
edited in hyperModel using a properties view tab that was added for this purpose. As shown in 
Figure 5, the Semantics tab is visible whenever the current selection is on a UML named 
element. Whenever the user enters text in any of these three fields, the corresponding UML 
profile stereotype is added automatically. 

Figure 5 illustrates the integration of UML and OWL editing. The user is browsing a class 
diagram of a UML model imported from FpML schemas, while in the Model Explorer view 
the concept hierarchy of the EBusiness ontology is displayed. The user has assigned a semantic 
annotation from the UML class named UnderlyingAsset to the OWL concept named Asset. 

In this example, the EBusiness.owl ontology is loaded from the user’s local file system. 
However, an important use case for semantic integration is reference to shared ontologies that 
are developed and maintained by a community of users. As with most OWL modeling tools, an 
ontology can be loaded into hyperModel by entering the remote URI that identifies a shared 
ontology. That ontology is loaded and rendered in a familiar UML style and used to assign 
semantic annotations to an application specific UML model. 

This is a proof-of-concept implementation for assigning semantic annotation to UML 
elements. Future versions of hyperModel will enhance this interface with drag-and-drop 
capability for assigning OWL concepts to UML elements. We will also add support for hybrid 
class diagrams that combine UML classes and OWL concepts in one diagram, distinguished by 
color and class icons, with dependency relationships illustrating the semantic assignment. 

Another enhancement under development is a new search dialog and search results view 
(similar to those provided in Eclipse IDE for Java) that support semantic classification and 
component reuse as described in Section 2.4. A similar ontology enabled search feature is 
described in [19] but hyperModel will integrate the searching into Eclipse IDE views. 

 

 



 

Fig. 5. Adding semantic annotations to a class in the FpML model. 

5   Conclusions 

In current development practice the design of XML Schemas is often disconnected from a 
coherent software engineering process and not aligned with other related schemas created 
within the same organization or across industry standards groups. The use of semantic models 
may help to bridge these gaps and provide a focal point for shared semantics and component 
reuse. 

We are working toward the goal of demonstrating and fulfilling the benefits outlined in 
Section 2.4 that enable semantic management and design of XML vocabularies. An ontology-
driven software engineering process for XML vocabularies would provide: 
• Design-time classification and consistency checking 
• Discovery and reuse XML message components 
• Runtime semantic validation of XML messages 
• Runtime message mapping based on semantic content 

 
In the financial services application we will start with OWL concept taxonomies and 

demonstrate benefits for component classification, discovery, and reuse. Then, through an 

 



iterative development process, we will identify and model the essential semantics that 
distinguish alternative kinds of financial assets, trades, and party roles. These enhanced 
ontologies will be applied to classify XML messages based on their element content and not 
only on explicit concept assignments. 

Additional features of the integrated design environment in hyperModel are still under 
development. In particular, we will extend hyperModel to cover semantic classification, 
discovery, and validation of models and XML instances. This enhancement will require 
integration with an OWL DL reasoner. To accomplish this, we are designing an Eclipse 
extension point for declaring available reasoners.  In Eclipse, the use of extension points in 
plug-in configuration files is a primary mechanism for modularity and extensibility of the 
integrated tool platform. We expect to build OWL reasoner integration for the open-source 
Pellet library [13] and for the more general DIG interface [3]. 
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