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Abstract

We introduce a novel framework for learning structural correspondences between
two linguistic domains based on training synchronous neural language models
with co-regularization on both domains simultaneously. We show positive pre-
liminary results indicating that our framework can be successfully used to learn
similar feature representations for correlated objects across different domains, and
may therefore be a successful approach for transfer learning across different lin-
guistic domains.

1 Introduction

Statistical discriminative methods for natural language processing (NLP) learn to combine features
in the textual domain of interest, to predict the labels that words or phrases belong to (e.g. NOUN,
VERB, etc. for part-of-speech tagging, and PERSON, ORGANISATION, etc. for information extrac-
tion). However, the performance of these models degrades quickly when they are presented with
text drawn from a different domain which does not resemble the original training distribution. The
process of porting a statistical model trained on one domain to perform well on another is called
transfer learning, or domain adaptation in the NLP literature.

The ideas presented here are inspired by Structural Correspondence Learning (SCL) [6], a technique
for domain adaptation which extends that of Ando & Zhang [1] and which aims to find the common-
alities between the feature spaces of two different domains. SCL makes use of unlabelled target data
to find common features between the two domains, thereby reducing their differences from a statis-
tical point of view. The technique makes use of so-called “pivot features”, features constructed on
the individual original feature spaces and which behave similarly for discriminative learning in both
domains. It is a linear technique which finds a common lower-dimensional projection of the pivot
features such that labels available for the one domain may be projected via this common feature
representation to be useful in the other domain.

Another major source of inspiration are Neural Language Models (NLMs) [3] which jointly learn
unsupervised real-valued word feature vectors (called word embeddings) with the other model pa-
rameters. These word embeddings capture the statistical structure of the domain they are trained
on, so that semantically similar words tend to have a nearby embedding (similar feature represen-
tation). Word representations learned using NLMs have previously been shown to be effective for
intermediate-level NLP tasks, such as chunking and extracting named-entities [8, 11].

One crucial issue with SCL is how to select the pivot features, and it usually remains difficult and
domain-dependent [2]. Another issue is with the assumption of linear correspondence between
the feature spaces of the two domains via the dependence on the linear dimensionality reduction
step. Our work builds on the idea of finding feature correspondences between two domains, but
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Figure 1: Overview of deep structural correspondence learning. Bold arrows between embeddings
and between models represent constraints on the learned vector representations and NLM functions
respectively. A represents the negative log-likelihood constraint .J"*(6;), and B the similarity con-
straints J(6;, 05) and J/ (6;, 6;) respectively.

we relax these two assumptions: First, we make use of the ability of NLMs to learn fully unsu-
pervised word representations in each domain, potentially trading training time for human feature-
engineering time. Second, we make no assumption on the nature of the mapping between input
feature spaces and shared embedding spaces, but rather let the networks learn this during training.

In this work we present a framework for transfer learning across different linguistic domains consist-
ing of training NLMs synchronously on multiple domains. We investigate the hypothesis that two
NLMs trained synchronously on two different domains can be used to learn similar feature represen-
tations for correlated objects (words) between the two domains, given sufficient co-regularization in
terms of priors on the learned representations and on the model parameters themselves. Our frame-
work provides a nonlinear analog to the linear Structural Correspondence Learning framework, and
therefore in future work we propose to apply it to domain adaptation of feature-based statistical mod-
els based on learning embeddings of different objects, when the same (or closely related) objects can
be found in both domains.

2 Deep structural correspondence learning framework

NLMs represent each word in the language as a distributed feature vector', and learns a function
to combine vector representations of observed previous words into representations for the predicted
target words. Each word maps to some point in a K-dimensional feature space, where each di-
mension corresponds to one such feature. Functionally similar words usually tend to cluster closer
together along some dimensions in this space. This is the result of training on large volumes of
text: syntactically or semantically similar words in similar contexts map to the same target words. A
network trained with adequate regularization prefers to learn compact functions and pulls the repre-
sentations of functionally similar words closer together to reduce its own modelling burden (satisfies
the regularization constraint) while it optimizes for training set modelling accuracy (satisfying the
negative log-likelihood constraint). We would like to encourage this behaviour of learning similar
representations for similar elements across more than one domain.

An overview of our framework is depicted in Fig. 1. Deep structural correspondence learning con-
sists of synchronously training two NLMs on two different domains, with strong priors on the in-
duced embeddings and the learned functions of each model, so as to encourage common features
between the domains to be extracted. More specifically, given two models m; and m;, we optimize
a global cost function Jgiohal = %(Jl + J;) consisting of the terms (only shown for m):

Ji = JN0;) + a7 (05, 05) + BT (65, 05), (1)

'As opposed to a distributional feature vector learned using for instance Brown clustering [7].



where 0; represents the parameters of model m;, the first term represents m;’s negative-log-
likelihood on its training set, and the second term (weighted by the coefficient ) represents the
prior on the similarity between m; and m;’s learned embeddings (therefore a function of 6; and
65), while the last term (weighted by the coefficient 3) represents the prior that the models should
represent similar functions (therefore also a function of both 6; and 6;).

Informally, this global training objective tries to simultaneously satisfy two divergent criteria: Make
the models and their learned features as similar as possible (the .J? and .J/ terms), while modelling
the language in each domain in the best possible way (the J!! term). We hypothesize that the
solution to this optimization problem yields an alignment in embedding space which captures the
common latent features between the two domains. By providing the models with an initial seed list
of words known to be similar in the two domains, the models can use the initial words as “pivots” or
“anchors” to iteratively align (pull closer to each other) the distributionally similar words in the two
vocabularies with respect to the pivots, and by extension with respect to each other.

JE(6;, ¢;) in Eqn. 1 encodes our prior knowledge of the similarity between the vocabularies of the
two domains. We want to provide the networks with a seed list of known distributionally similar
words to start from. There are at least two possible ways to model this prior knowledge: The first
is to add hard constraints on the learned representations by using the same underlying physical
embedding vector r; for common word w; in both domains (known as “tied weights”). The second
approach is to minimize a weighted distance term between known (or suspected) common words.
In this work we only focus on the first approach and leave the second approach for future work.

The NLM consists of a learned function which models the learned regularities for combining words
in the training language into new words, i.e. the syntax of the language, represented by the .J/ (6;, 6;)
term. This term encodes our prior knowledge of the similarity between the syntactic structures over
the different linguistic domains. To compute the similarity between the learned functions one cannot
simply compute the distance between the weight vectors of the individual networks, since a network
can permute its hidden units and their associated weights and still learn similar function mappings.
We approximate this term by computing the distance between the outputs produced by the two
networks given the same input [9]. l.e. given a common input minibatch of M training inputs, we
compute the Euclidian distance between the vector formed for each model by concatenating all M
predicted next word embedding vectors on the common input.

Finally, it has previously been established that the order in which training examples are presented to
(especially) non-convex learning algorithms has an effect on the learning dynamics of the model [4],
called curriculum learning. In that work, for language modelling, the strategy was to initially favour
more frequently occurring words, and then gradually introduce less frequent words. We hypothesize
that a similar curriculum strategy should improve the training convergence rate of pulling represen-
tations of similar words closer, since presenting both networks initially with examples favouring
common word pairs allows the networks to learn informative representations for these pivot words
with respect to one another. We hypothesize that this should make it easier to “slot in” new words
later on. Our strategy is to partition our training set into decreasing number of common pivot words
per training pair (a (context, target word) pair). Each group in the partition is subsequently sorted in
decreasing order of mean frequency of occurrence of its words in the corpus. We therefore favour
common words between the two domains primarily, and more frequent words in each domain sec-
ondarily.

3 Experiments and results

Our primary hypothesis is that two NLMs trained synchronously on two different domains can be
used to learn similar feature representations for correlated objects (words) between the two domains,
given sufficient co-regularization in terms of priors on the learned representations and on the model
parameters themselves. In order to directly test this hypothesis, we create a controlled dataset where
we can control the actual distribution of known distributionally similar word pairs.

We randomly sampled 1M consecutive words from the LA Times dataset. Tokens were lower-cased,
and digits were conflated to skeleton representations”. We extracted the top-20K tokens (call this
V') from this processed and tokenized dataset and then proceeded to create two distinct datasets as
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follows: Given a degree-of-overlap parameter k, we extract the top k% tokens V. from V. For
each remaining word w; € V\V, 3, we create two distinct vocabularies V; and V5, consisting of the
tokens w; + “_1” and w; + “_2” respectively. We then encode two disjoint datasets (i.e. different,
non-overlapping sections from the same training set), D, and D using the vocabularies V; and V5
respectively, each therefore containing k % overlap in terms of the original vocabulary V.

We can exploit the fact that we know which word pairs are similar in the original dataset to directly
measure the effectiveness of the proposed methodology to learn common word representations, by
simply measuring the average frequency-weighted distance between these known similar word-pair
embeddings: Given a list of N known similar word pairs* (w;, w;), we compute the average word-

pair distance as /) f;(r; — r;)? where f; is the normalized frequency of occurrence of word w;.
Importantly, we measure this distance for evaluation, but do not directly optimize for it.

It is also important to be aware of the general shrinking effect that any Lo regularization terms
may have on the average magnitude of the total embedding space, and not to confound such
regularization-based shrinking of the embedding norms with the model actually learning to pair
distributionally-similar word pairs. We therefore enforce a magnitude normalization step after each
update to the embeddings as in Collobert [8]. However, instead of normalizing all embeddings
individually to lie on the unit hyperspere, we normalize each embedding vector by the average mag-
nitude over all embeddings, i.e. we maintain an average embedding vector norm of 1.

We constructed a dataset by choosing £ = 1 % vocabulary overlap between the domains (200
word pairs), using a vocabulary of the 20,000 most frequent words in the corpus, resulting in a
joint vocabulary of 39,800 words. We ran several experiments to evaluate our primary hypothesis,
and also to evaluate the impact that (i) imposing a function-distance constraint, and (ii) employing
a curriculum-based training strategy has on the average distance between known distributionally
similar word pair embeddings.

We used our own Theano [5] implementation of the Log Bilinear NLM [10]. All models were trained
with an adaptive learning rate starting at 0.1, decreasing slowly in the number of minibatches. Fig. 2
shows the average distances between the learned vector representations for the similar word pairs
(lower is better) normalized to lie in the same unit interval for the 3 test cases that we evaluate, as
training progresses. We see that without constraining the learned functions (setting 5 = 0 in the
BJ7 term in Eqn. 1), the learned representations for similar word pairs diverge. However, with ade-
quate constraints on the learned functions (a higher 3 value), the representations learned for similar
word pairs are shown to start converging, which confirms our primary hypothesis. Interestingly, we
found that imposing a curriculum ordering on the training data (not shown) leads to faster initial
convergence rates on the curriculum boundaries, but does not lead to a faster convergence rate in
general.

4 Conclusion

We introduced a novel framework for learning structural correspondences between two linguis-
tic feature domains based on training synchronous neural language models (NLMs) with co-
regularization on multiple domains simultaneously. We exploit the fact that NLMs learn unsuper-
vised feature representations of the objects in the domains on which they are trained, and constrain
the models to learn similar representations for objects which show correlated behaviour in the dif-
ferent training domains.

Our initial results are positive, and indicate that features learned for common objects do indeed
become progressively more similar, which validates our hypothesis. In future work, we intend to
apply this work to the transfer learning setting, to transfer feature-based sequence tagging models
from one domain of text to another with minimal user intervention.

3Backslash indicates the set deletion operator.
4E.g. (‘president_1’, ‘president_2’).
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Figure 2: Average normalized distance between learned vector representations for similar word pairs
across two different domains as training progresses over 2 epochs of the data (lower is better). The
top solid line shows that training without constraining the learned functions of the neural language
models leads to a divergence. The middle dashed line shows the positive effect of adding a weak
prior that learned neural language models should be as similar as possible. Finally, the bottom solid
line shows that increasing this prior leads to faster convergence.
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