
An Approach to Automatically Generated Model
Transformations Using Ontology Engineering Space

Stephan Roser, Bernhard Bauer

Programming of Distributed Systems,
Institute of Computer Science, University of Augsburg, D-86135 Augsburg, Germany

[roser|bauer]@informatik.uni-augsburg.de

Abstract. Integration of systems across various enterprises to realize cross-
organisational collaborations is complex. The application of model-driven
software development facilitates faster and more flexible integration by sepa-
rating system descriptions in models to different levels of abstraction. How-
ever, interoperability problems in modelling can be hardly overcome by solu-
tions operating essentially at syntactical level. This paper presents an approach
using the capabilities of semantic web technology in order to improve cross-
organisational modelling by automated generation of model transformations.

1 Introduction

With the development of more and more complex systems across enterprises new
challenges arise. While new interoperability issues in modelling enterprises and ap-
plication systems have to be overcome, model-driven software development has to be
fostered to enable an efficient development of flexible cross-organisational informa-
tion and communication systems. Unfortunately, most current interoperability solu-
tions, addressing the problems of different representation formats, modelling guide-
lines, modelling styles, and methodologies at syntactical level, focus on metamodels’
abstract and concrete syntax. However interoperability can only be achieved on a
semantical level. Thus there is a need to integrate and adapt ontologies in future ar-
chitectures and infrastructures to the layers of enterprise architectures and to opera-
tional models. This can be done by applying mappings between different enterprise
model formalisms based on an enterprise modelling ontology and by enriching het-
erogeneous business models semantically by ontologies to achieve a shared under-
standing of the enterprise domain [12].

In this work we propose the approach of ontology-based model transformations
(ontMT), which integrates ontologies in modelling by utilising different technological
spaces [14] (namely MDA and Ontology technological space) for automated genera-
tion of model transformations and mappings between metamodels. Interoperability in
modelling is fostered by employing automated reasoning technology from ontology
engineering technological space to the generation of model transformations. It is
shown, how the ontMT approach can be realized as a semantic-enabled model trans-
formation tool (Sem-MT-Tool) in a semantic-enabled IDE (SemIDE [1]). This tool

applies technology bridging MDA and Semantic Web approaches like the Ontology
Definition Metamodel (ODM) [19] and makes use of the capabilities and benefits of
both approaches.

The paper is organized as follows: After introducing background information to
our work in chapter 2, chapter 3 comprises the problem statement which is the origin
of our work. In section 4 the overall approach of ontMT is explained, before the pro-
cedure and concepts of automated model transformation generation are introduced in
chapter 5. Chapter 6 provides a detailed look on the components of semantic-enabled
IDE tool realizing the ontMT approach. Finally after extracts of a case study about
ontMT in section 7, this paper concludes with a discussion and outlook in chapter 8.

2 Background and Context

Models: Definitions of models vary according to the purpose they are used for. A
nice general definition is provided by a mega-model presented in [6], describing ‘a
model as a system that enables us to give answers about a system under study without
the need to consider directly this system under study’. In short a model is representa-
tionOf a system, where systems can be physically observable elements like models or,
more abstract concepts like modelling languages. A modelling language is a set mod-
els. Models are elementsOf a modelling language, if they conformTo a model of the
modelling language (i.e. a metamodel).

Model-driven Software Development: Model-driven software development
(MDSD), as a generalization of OMG™’s Model-driven Architecture paradigm
(MDA®), is an approach to software development based on modelling and automated
transformation of models to implementations [7]. In MDSD models are more than
abstract descriptions of systems, as they are used for model- and code generation –
they are the key part of the definition of a software system. Largely automated model
transformations refine abstract models to more concrete models (vertical model trans-
formations) or simply describe mappings between models of the same level of ab-
straction (horizontal model transformations). As model transformations play a key
role in MDSD, it is important that transformations can be developed as efficiently as
possible [8]. With the MOF 2.0 Query, Views, and Transformation (QVT) specifica-
tion [20] the OMG provided a standard syntax and execution semantics for transfor-
mations used in a MDSD tools chain. Beneath of commercial products facilitating
MDA1 there exist open source projects dedicated to MDSD. The Eclipse Generative
Modeling Tools project (GMT) [9] provides a set of research tools illustrating opera-
tions applicable to abstract models. Those tools range from code generation (oAW,
MOFScript) over model transformation and weaving (ATL, AMW) to model man-
agement (AM3). The MODELWARE project [17] aims to close the gap between the
end-users and solutions of currently used software development methods by using
models for the construction of software. It contributes to the Eclipse Model Driven
Development integration project (MDDi) [16]. MDDi is dedicated to offer a platform

1 OMG’s list of MDA companies: http://www.omg.org/mda/committed-products.htm

the integration facilities needed for applying a MDSD approach. It aims to provide
the ability to integrate modelling tools to create a customizable MDSD environment.

Ontology: Ontologies are considered a key element for semantic interoperability
and act as shared vocabularies for describing the relevant notions of a certain applica-
tion area, whose semantics is specified in a (reasonably) unambiguous and machine-
processable form [4]. According to [18] an ontology differs from existing methods
and technologies in the following way: (i) the primary goal of ontologies is to enable
agreement on the meaning of specific vocabulary terms and, thus, to facilitate infor-
mation integration across individual languages; (ii) ontologies are formalized in
logic-based representation languages. Their semantic are thus specified in an unambi-
guous way. (iii) The representation languages come with executable calculi enabling
querying and reasoning at run time. Application ontologies contain the definitions
specific to a particular application [10], while reference ontologies refer to ontologi-
cal theories whose focus is to clarify the intended meaning of terms used in specific
domains.

Technological Spaces: Kurtev et al. [14] introduce the concept of technological
spaces (TS) aiming to improve efficiency of work by using the best possibilities of
different technologies. A technological space is in short a zone of established exper-
tise and ongoing research. It is a working context with a set of associated concepts,
body of knowledge, tools, required skills, and possibilities. Initially five technological
spaces (MDA TS, XML TS, Abstract Syntax TS, Ontology TS, DBMS TS) have
been presented in [14], of which the MDA TS and the Ontology TS are important for
our work. In the MDA TS models are considered as first-class citizens, representing
particular views on the system being built. The Ontology TS can be considered as a
subfield of knowledge engineering, mainly dealing with representation and reasoning.
The ontology engineering space performs outstanding in traceability, i.e. in the speci-
fication of correspondences between various metamodels, while the MDA TS is
much more applicable to facilitate aspects or content separation. With the Ontology
Definition Metamodel (ODM) [19] the OMG issues a specification defining a family
of independent metamodels, related profiles, and mappings among the metamodels
corresponding to several international standards for ontology definition, as well as
capabilities supporting conventional modelling paradigms for capturing conceptual
knowledge. It is based on a grounding in formal logic, through standards-based,
model-theoretic semantics, sufficient to enable reasoning engines to understand, vali-
date, and apply ontologies developed using ODM. ODM includes a set of metamod-
els which are grouped logically together according to the nature of the representation
formalism that each represents; ODM comprises metamodels for RDF(S), OWL,
common logic (CL), topic maps (TM), and as a non normative part description logic
(DL). Metamodels for RDF(S) and OWL represent more structural or descriptive
representations that are commonly used in the semantic web community. ODM fur-
ther defines transformations between the UML2 metamodel and different metamodels
defined in ODM (e.g. OWL and RDF(S)).

Semantics: Unfortunately the notion of the term semantics differs in the context it
is used and by the people using it. As the root of the problem Harel and Rumpe [11]
identify insufficient regard for the crucial distinction between syntax and true seman-
tics. Thus we clarify a few terms that have particular significance to this work.

• Syntax: Syntax NL is the notation of a language L. It is distinguished between the
concrete syntax, the textual or graphical representation of the language, and an ab-
stract syntax or metamodel, being the machine’s internal representation. A meta-
model is a way to describe a language’s syntax [11].

• Semantic: Semantic is the meaning of language, which is expressed by relating
the syntax to a semantic domain. The description of a semantic domain S (its nota-
tion is NS) can vary from plain English to mathematics. Semantics is defined by a
semantic mapping M: L → S from the language’s syntax to its semantic domain
[11].

• Ontological: According to [19] ‘an ontology defines the common terms and con-
cepts (meaning) used to describe and represent and area of knowledge’. Talking
about ‘ontological’ we mean technology of the Ontology TS, i.e. technology based
on logics like RDF(S) or OWL used by the semantic web community to describe
e.g. vocabularies or ontologies. Instead of semantic web enabled we also use the
term semantic-enabled as synonym in this work.

3 The Problems

Model-driven software development is getting more sophisticated, by using more
powerful tools and languages for modelling enterprises and developing application
systems. As a natural course of things a huge diversity of often specialized method-
ologies, modelling languages and representation formats has been evolved, serving
the purposes of the particular application domains. Thus we can find heterogeneity of
models, especially in the syntax they use but also in the semantics of the used con-
cepts that is associated with by different people and organisations.
• Different versions of metamodels: Time and again new versions of metamodels

or domain specific languages are released, e.g. the metamodels for UML 1.x and
UML 2.x. New model transformations have to be developed and existing model
transformations have to be adjusted, wherever new versions replace the old ones.

• Different abstract and concrete syntax: Apart from different visual representa-
tions (concrete syntax) of modelling languages, metamodels in many cases also
differ in their abstract syntax (as internal representation formats could be used e.g.
different MOF™ implementations like EMF or MDR, OWL, etc.) though they
were developed describing the same application domain.

• Different semantics: Since the semantics of a modelling language’s concepts is
rarely formally specified, different people and organisations often associate differ-
ent semantics with the same concepts used in the metamodel. Often this is done
consciously by applying special model styles.

• Different modelling views: In distributed systems development and application
integration across collaborating organisations development processes have to be
integrated by e.g. providing views of models which are compliant to the represen-
tation guidelines of the respective partner. Specification and implementation of
those views has to be supported by an automated model transformation generation
in order to improve seamless inter-organisational system development.

4 The Approach

To overcome those problems, ontMT facilitates methods to generate model transfor-
mations despite of structural and semantic differences of metamodels by applying
Semantic Web technology of Ontology TS.

MM2MM1

Reference Ontology

Bootstrap Model
Transformation

Binding
(sem. Annotation)

Model Transformations

Metamodels

v1.5 v1.6

Metamodels

v2.0 v2.1

Binding
(sem. Annotation)

Inference Component

Ontology-based Model Transformation
Model Manipulator

Sem-MT-Component

Source Target

input

relationship
(binding)

MM2MM1 MM2MM2MM1MM1

Reference Ontology

Bootstrap Model
Transformation

Binding
(sem. Annotation)

Model Transformations

Metamodels

v1.5 v1.6

Metamodels

v1.5 v1.6

Metamodels

v2.0 v2.1

Metamodels

v2.0 v2.1

Binding
(sem. Annotation)

Inference Component

Ontology-based Model Transformation
Model Manipulator

Sem-MT-Component

Source Target

input

relationship
(binding)

Figure 1: Ontology-based model transformation – overall approach

Different versions of metamodels are bound to a reference ontology (see definition in
chapter 2) of a certain domain (see figure 1). Bindings (sem. Annotation) specify the
semantic mapping from metamodels to the semantics of their concepts, i.e. to the
reference ontology. To generate model transformations for various model transforma-
tion languages ontMT makes use of reasoning mechanisms. The metamodels and the
reference ontology are given, while the bindings of the metamodels to the reference
ontology have to be specified. Finally a bootstrap model transformation is needed,
which is either given or generated automatically. The bootstrap model transformation
is an initial model transformation (e.g. from metamodel v1.5 to metamodel v2.0) in
which the rules for model transformation (and especially the semantics of the model
transformations to generate) are encoded. If e.g. a new model transformation from
metamodel v1.5 to metamodel v2.1 has to be generated, only the delta between
metamodel v2.0 and v2.1 has to be considered. The new model transformation is
generated by substituting the concepts of metamodel v2.0 with the concepts of meta-
model v2.1 in the initial model transformation. Details are given in the next section.

5 Automated Generation of Model Transformations

Model transformations between various modelling languages can be automatically
derived and generated by the ontMT approach (see figure 1). In this section we de-
scribe the procedure to generate mappings (i.e. semantically identical model trans-
formations) between a modelling language A and a modelling language B.

For both languages exists abstract syntax NA/NB in various technological spaces: A
has (like B) an abstract syntax in the MDA TS NA-mda and the Ontology TS NA-ont
which are synchronized. Thus we can work with the syntax and the capability of that

technological space better suited for solving a problem (see figure 2a). Semantics of
the concepts is described by the means of the semantic domain SD and its notation in
a reference ontology NRO (e.g. OWL) respectively. Semantics of languages is defined
by semantic mappings to the semantic domain MA: A → SD and MB: B → SD. The
ontological grounding2 is a notation of the semantic mapping from NA-ont to NRO. The
goal of the transformation to generate is to define ‘identity’ relationships between the
concepts of A and B. The model transformation MTmapAB: A ↔ B between A and B has
the following semantics MMTmapAB: MTmapAB → id, where id is the identical mapping.

a) MDA TS

A

NA-mda NA-ont

SDMA: A → SD

NRO
NMA

Ontology TS

represenationOf

 b)

MTAA: A ↔ A
NA NA'NMTAA

NA NB

NMTAB

MTAB: A ↔ B

σ(MTAA)=MTAB

1

2

3

Figure 2: a) Modelling language, semantic mapping, semantic domain and their representa-
tions; b) Procedure of automated mapping generation

The generation procedure works on the model of the model transformation and the
models of the modelling languages, and exploits the ontological grounding to the
reference ontology. On the basis of reasoning results gained in the Ontology TS,
modification operations are called to obtain the new model transformation working
solely on the model of the model transformation and the metamodels. To generate the
model transformation MTmapAB the following steps are performed (see figure 2b):
• A bootstrap model transformation MTmapAA: A ↔ A is generated, mapping A on

itself. This bootstrapping step is necessary to obtain a first model of the model
transformation (transforming NA to NA') 3, which only has to be adjusted by modifi-
cations operators. Assuming the same ontological grounding for NA and NA', the
bootstrap model transformation is an id: MMTmapAA: MTmapAA → id.

• The inference engine derives interrelationships in between NA' and NB in the
Ontology TS. This is possible, since both NA' and NB are mapped to the same refer-
ence ontology NRO. It is automatically computed, how the concepts of NA' can be
substituted by semantically identical concepts of NB (σ(MTmapAA)=MTmapAB). Those
interrelationships can be transferred to the MDA TS as the modelling languages A
and B have synchronous representations in both MDA TS and Ontology TS.

• Finally the concepts of NA' are substituted with the concepts of NB in the model
of MTmapAA and we obtain a model of the model transformation MTmapAB with
MMTmapAB: MTmapAB→ id. The substitution is performed via modification operations
on the abstract syntax (model) of the model transformation MTmapAA in MDA TS.

2 The definition of the ontological grounding is a semantic annotation comprising static seman-

tics of the metamodels, i.e. the semantics of the concepts, i.e. an ontology.
3 A simple version of such a mapping can easily be generated on basis of a metamodel in the

MDA TS. By traversing the metamodel via its containment relationships the appropriate
mapping rules can be generated.

The first (bootstrapping) step helps to extend our approach to scenarios in which
given model transformations have to be adjusted to modelling languages and meta-
models for which they initially have not been designed. The bootstrap transformation
is simply replaced by a given transformation and step 2 and 3 can be performed like
described above. Avoiding to derive model transformations directly from ontologies
results in a more flexible and well-structured architecture of the Sem-MT-Tool (see
chapter 6). Issues concerning the model transformation, like checking if its model
conforms to the QVT metamodel or considering the cardinality of associations’ ends,
are all dealt with in the MDA TS. The Sem-MT-Component invokes modifications
operations on the basis of the results of the reasoning over the reference ontology and
the application of heuristics (more see section 6.4).

6 Components of an Sem-MT-Tool

This section presents in detail the components of ontMT realized as a tool for a se-
mantic-enabled IDE, namely the Sem-MT-Tool, is called its parts and functionality.

6.1 Overview

MMx Mx

ModelRep. Ontologies
ApplOntx Ref.Ontology

Inference
Component

Model
Manipulator Sem-X-Component RuleSet

Sem-X-Tools

SemIDE-Infrastructure

Semantic enabled IDE

1

2

3

4 5

. . .
MMx Mx

ModelRep. Ontologies
ApplOntx Ref.Ontology

Inference
Component

Model
Manipulator Sem-X-Component RuleSet

Sem-X-Tools

SemIDE-Infrastructure

Semantic enabled IDE

1

2

3

4 5

. . .

Figure 3: Ontology-based model transformation as part of a semantic-enabled IDE

OntMT is realized as Sem-X-Tool as part of a semantic-enabled IDE (SemIDE) (see
figure 3) [1]. The infrastructure of the SemIDE provides basic functionality including
a bridge between models of MDA TS and application ontologies of Ontology TS
(like it is described in [3]) and an inference component, which can be individually
configured and used by Sem-X-Tools registered at the infrastructure. Sem-X-Tools,
like the Sem-MT-Tool presented in this paper, are built on top of the SemIDE infra-
structure and consist of a model manipulator, a Sem-X-Component and a rule set.
The model manipulator reads, creates, modifies and deletes models of the model
repository . It delivers information about models to the Sem-X-Component and
provides interfaces for model manipulation .

The Sem-X-Component implements the core functionality of a Sem-X-Tool. It
makes use of the reasoning results gained by inferring ontologies and computes a

queue of model adjustment operators . Model adjustment operators are tasks that
specify which modification steps have to be performed by the model manipulator.
The queue of model adjustment operators is processed by calling the model manipu-
lator’s interface. Since Sem-X-Tools are based on different relationships between the
ontologies’ elements, each Sem-X-Tool has its own set of reasoning rules.

6.2 Inference Component

Figure 4 depicts a detailed architectural view on the inference component of ontMT.
The inference component consists of a knowledge base and a reasoner. The base
graph contains all facts of the knowledge base before the reasoning, i.e. the reference
ontology, application ontologies4 and the ontological groundings. The reasoner is
triggered by rules specific to the Sem-MT-Tool, and computes the inference graph on
the basis of the base graph. As the result of the reasoning the knowledge base con-
tains information about all relationships important for the ontMT. These are espe-
cially relationships between the application ontologies.

Base-Graph
(Reference Ontology,

Application Ontologies, etc.)
Reasoner

Inference-Graph

Knowledge Base

Sem-MT-Component

querying

Rules

Inference Component

Base-Graph
(Reference Ontology,

Application Ontologies, etc.)
Reasoner

Inference-Graph

Knowledge Base

Sem-MT-Component

querying

Rules

Inference Component

Figure 4: Inference component

6.3 Model Manipulator

The model manipulator provides modification operations on model transformations
(the model transformations themselves are models) and the respective metamodels. It
solely works on the abstract syntax of the (meta)models in the MDA TS. The model
manipulator component is divided in a front and a back end, similar to established
compiler technology (see figure 5). The front end primarily conducts tasks that only
dependent on the source language, while the back end deals with all issues specific to
the target language. The metamodels and the bootstrap model transformation are
brought into an intermediate representation format by the scanner and the parser. The
abstract syntax tree analyser checks, whether the modifications proposed by the infer-
ence component can sensibly be applied to the bootstrap model transformation. Those
modifications are performed by the transformation manipulator.

4 An application ontology corresponds to a metamodel in the Ontology TS.

Bootstrap
Transformation

Front-End

Model Manipulator

Back-End

Scanner & Parser

Transformation
Generator

Sem-MT-Component

Abstract Syntax Tree - Analyser

Transformation Modifier

Transformation
Optimiser

Metamodels

Model Transformation

querying

InferenceGraphInference Component

querying

proposing modifications

Bootstrap
Transformation

Front-End

Model Manipulator

Back-End

Scanner & Parser

Transformation
Generator

Sem-MT-Component

Abstract Syntax Tree - Analyser

Transformation Modifier

Transformation
Optimiser

Metamodels

Model Transformation

querying

InferenceGraphInference Component

querying

proposing modifications

Figure 5: Model manipulator

6.4 Sem-MT-Component

The Sem-MT-Component (a specific Sem-X-Component) implements the core part
of ontMT approach. It realizes the main functionality of the Sem-MT-Tool by using
inference results of the Ontology TS to gain a queue of adjustment operators for the
modification and generation of model transformations in the MDA TS.

Figure 6: Activity diagram of ontology-based model transformation procedure

Figure 6 shows how the Sem-MT-Component and model manipulator interact in
order to generate model transformations. Firstly, the model manipulator identifies
metamodel’s concepts, which have to be substituted in the model transformation.
Secondly, the Sem-MT-Component queries the inferred fact base and computes the
‘best possible’ substitution of the metamodel’s concepts (as a queue of adjustment
operators) using heuristics. Before the adjustment of the bootstrap model is con-
ducted, the model manipulator checks whether the substitution can be applied to the
model transformation and is sensible. In the case that the substitution cannot be ap-
plied to the model transformation, the model manipulator states to the Sem-MT-
Component which concepts need a different substitution and the severity of the ex-

ception. On the basis of the history of the previously proposed substitutions the Sem-
MT-Component uses its heuristics to compute a ‘next-best’ substitution. When a
proposed substitution finally passes the model manipulator’s checks, the queue of
modification operators is applied to adjust the model transformation’s model.

The Sem-MT-Tool generates QVT model transformations. Therefore its model ma-
nipulator works on an EMF-based implementation of QVT’s metamodel. The infer-
ence component uses a semantic web framework which allows loading, storing and
modifying ontologies, reasoning over ontologies as well as conducting queries over
ontologies. In a first prototype we use the Jena Semantic Web Framework [13], but
also other projects like EODM [5] are an option for further implementations.

7 Case Study about Automated Mapping Generation

This chapter comprises a short example of ontMT and how the Sem-MT-Tool works.
Therefore a mapping between two metamodels (figure 7 and 8) for process modelling
is generated automatically. The first metamodel MM1 is an excerpt of a metamodel
for process orchestration in a service-oriented environment. The second metamodel
MM2 is also for process modelling.

Figure 7 and 8: Metamodel MM1 and Metamodel MM2

The reference ontology in this example (see figure 9) is an excerpt of Web Ontology
Language for Services (OWL-S). For the ontological grounding we use a notation
similar to SMAIL [15] (Semantic Mediation and Application Interoperability Lan-
guage). ‘=:’ stands for a lossless annotation, where the annotation fully captures the
intended meaning. ‘>:’ denotes an overspecification, where the level of refinement of
the annotated element is greater than the level of refinement of the concepts in the
reference ontology.
Process[name,steps,flows] =: ServiceModel[name,composedOf,composedOf]
Step[name,out] =: ProcessComponent[name,connected]
Flow[sink] =: FollowedBy[followed]

EPC[name,connectors] =: ServiceModel[name,composedOf]
EPC[name,function,connectors] >: ServiceModel[name,comp.Of,composedOf]
EPC[name,event,connectors] >: ServiceModel[name,comp.Of,composedOf]
EPC[name,controlelement,connectors] >: ServiceModel[name,comp.Of,composedOf]

EPCElement[name,connector] =: ProcessComponent[name,connected]
Connector[epcelement] =: FollowedBy[followed]

Table 1 and 2: Ontological Grounding of MM1 and MM2

Figure 9: Reference Ontology

As a first step the bootstrap model transformation is generated by traversing meta-
model MM1. Its model (see table 3) serves as an input for the model manipulator.

transformation process_bootstrap(mm1:MM1, mm1’:MM1) {
 ...
 relation R1 {
 n: String;
 checkonly domain mm1 prc:Process {name=n, steps=stps:mm1.Step,
 flows=flws:mm1.Flow};
 enforce domain mm1’ prc’:Process {name=n, steps=stps’:mm1’.Step,
 flows=flws’:mm1’.Flow};
 where { R2(stps, stps’); R3(flws, flws’); }
 }
 relation R2 {
 n: String;
 checkonly domain mm1 stp:Step {name=n, out=flw:mm1.Flow};
 enforce domain mm1’ stp’:Step {name=n, out=flw’:mm1’.Flow};
 }
 relation R3 {
 checkonly domain mm1 flw:Flow {sink=stp:mm1.Step};
 enforce domain mm1’ flw’:Flow {sink=stp’:mm1’.Step};
 }
}

Table 3: Excerpt of bootstrap model transformation written in QVT [20] syntax

With this input (metamodels, reference ontology, ontological groundings and boot-
strap transformation) the computation of the substitution of NA' with NB can start:
• For each concept to substitute the Sem-MT-Component queries the inference com-

ponent for possible substitutions, which searches the fact base for triples of the
kind <Step:MM1> <?> <?:MM2>5. The result is:
<Step:MM1> <equal> <EPCElement:MM2> ; <Step:MM1> <general> <Function:MM2> ;
<Step:MM1> <general> <Event:MM2> ; <Step:MM1> <general> <ControlElement:MM2> ;
<Step:MM1> <general> <Split:MM2> ; <Step:MM1> <general> <Join:MM2>

5 The triples of in the fact base are of the form <subject> <predicate> <object>. The Sem-

MT-Component currently supports the following predicates: equal, meaning the subject is
equal to the object; special, meaning the subject is a specialization of the object; general,
meaning the subject is generalization of the object.

In the first substitution proposal only facts with the predicate being <equal> are
considered, in order to find the best possible substitution. Since e.g. for the Ob-
jectProperty <steps(Process,Step): MM1> no ‘equal’ substitution is possible, this Ob-
jectProperty is omitted in the substitution in the hope that this does not affect the
model transformation. Thus the proposed substitution is:

Process[name,flows] EPC[name,connectors]
Step[name,out] EPCElement[name,connector]
Flow[sink] Connector[epcelement]

• Before the substitution is performed, the model manipulator checks whether the
substitution can be applied and produces sensible results. In our example a new
valid model transformation would be generated by the proposed substitution.
However the new model transformation would loose connecting between its rules
R1 and R2, since the steps-Attribute is removed from the transformation.

• Thereon the Sem-MT-Component searches for an alternate substitution, also con-
sidering facts with predicates other than <equal>. For a substitution decision it ap-
plies a hierarchy, in which the predicate <equals> is better than <special> and <spe-
cial> is better than <general>. The facts provided by the inference component are:
<steps:MM1> <general> <function:MM2> ; <steps:MM1> <general> <event:MM2> ;
<steps:MM1> <general> <controlelement:MM2>

Based on its history of previously proposed substitutions6 and the fact, that no facts
with the predicates <equals> or <special> exist, the Sem-MT-Component proposes
the following concept substitution:

Process[name,steps,flows] EPC[name,function&event&controlelement,
connectors]

Step[name,out] EPCElement[name,connector]
Flow[sink] Connector[epcelement]

• The model manipulator again checks the substitution, which would lead to the
following new model transformation:
 relation R1 {
 n: String;
 checkonly domain mm1 prc:Process {name=n,steps=stps:mm1.Step,
 flows=flws:mm1.Flow };
 enforce domain mm2 epc:EPC {name=n,
 function=fct:mm2.EPCElement, ...,
 connectors=cnnts:mm2.Connector};
 where { R2(stps, fct); ... ; R3(flws, cnnts); }
 }

This transformation is invalid, since e.g. the attribute function is of the type Func-
tion and not of the type EPCElement (see MM2).

• Thus the Sem-MT-Component calculates an alternative subsitution for Step:
Proc-
ess[name,steps,flows]

 EPC[name,function&event&controlelement,
connectors]

Step[name,out] Function[name,connector]&
Event[name,connector]&
ControlElement[name,connector]

6 The Sem-MT-Component has a history of its previous substitution proposals, so that it will

not make the same proposal a second time and the search for substitutions terminates. If the
Sem-MT-Component cannot find a ‘better/other’ substitution, though requested by the se-
mantic analyser, the semantic analyser chooses the last substitution proposal producing a
valid model transformation.

Flow[sink] Connector[epcelement]
• The check of the model manipulator shows, that this concept substitution will

generate a valid model transformation and will have no major side-effects on the
model transformation.

• Finally substitution is used to generate the new model transformation via model
manipulation. The following transformation rules are an excerpt of the automati-
cally generated mapping between metamodel NA to NB:
 relation R1 {
 n: String;
 checkonly domain mm1 prc:Process {name=n, steps=stps:mm1.Step,
 flows=flws:mm1.Flow };
 enforce domain mm2 epc’:EPC {name=n, function=fct:mm2.Function,
 event=evt:mm2.Event, controlelement=cntel:mm2.ControlElement};
 connectors=cnnts:mm2.Connector};
 where { R2a(stps, fct); ...; R3(flws, cnnts); }
 }
 relation R2a {
 n: String;
 checkonly domain mm1 stp:Step {name=n, out=flw:mm1.Flow};
 enforce domain mm2 fct:Function {name=n,
 connetor=con:mm2.Connector};
 }

8 Discussion and Outlook

The ATLAS Model Weaver (AMW) tool implements the model weaving approach
introduced in [2]. It enables the representation of correspondences between models,
in so-called weaving models, from which model transformations can be generated.
Nevertheless, though model weaving is to improve efficiency in the creation and
maintenance of model transformations, creating weaving links is not automatic.

In [21], the authors introduce model typing as extension of object-oriented typing
and propose an algorithm for checking the conformance of model types. It is pre-
sented, how model typing permits more flexible reuse of model transformations
across various metamodels while preserving type safety. This approach improves
reuse of model transformations, but does not provide automatic mapping generation.

The approach of ontMT integrates ontologies in MDSD and makes use of the rea-
soning capabilities of the Ontology TS. In the case study we have only considered
subClassOf and equivalentClass relationships. In further versions we will apply ex-
pressions like intersectionOf or unionOf to enable more complex annotations and
ontology specifications; in this context our reasoning rule set will be extended.

OntMT supports interoperability between enterprise models by an automated gen-
eration of horizontal transformations. This offers new possibilities for the integration
of domain specific languages (DSLs) and (‘legacy’) models. Effort for adjusting
model transformations to new versions of metamodels is reduced. Generic ‘bootstrap’
model transformations encode knowledge e.g. about software or platform architecture
independent. Changes to model transformation rules have to be adapted in generic
transformations only once. Thus ontMT improves collaboration of distributed devel-
opment partners using different development environments, modelling guidelines and
model transformations of methodologies.

Nevertheless our approach uses additional information, which has to be provided
by the people developing metamodels and domain specific languages. Hopefully
these ontological groundings can also be used by other semantic-enabled tools. Prob-
lems also arise, when no appropriate reference ontology exists. In those cases tech-
niques for matching and merging ontologies, like linguistic, schema-based or prob-
abilistic approaches, have to be applied to obtain a suitable reference ontology.

We have experimented with selected prototypes to show the feasibility of the
ontMT approach, but a Sem-MT-Tool still has to be developed and integrated in a
semantic-enabled IDE. On this basis the next goals will be to develop better heuristics
for the computation of concept substitutions and to provide more sophisticated model
manipulation operations on model transformations.

References

1. B. Bauer, S. Roser: Semantic-enabled Software Engineering and Development, 1st Inter-
national Workshop on Applications of Semantic Technologies, 2006.

2. J. Bézivin, F. Jouault, P. Valduriez: First Experiments with a ModelWeaver, OOPSLA &
GPCE Workshop, 2004.

3. J. Bézivin et al.: An M3-Neutral Infrastructure for bridging model engineering and ontol-
ogy engineering, I-ESA Conference, 2005.

4. S. Borgo et al.: OntologyRoadMap. WonderWeb Deliverable D15;
http://wonderweb.semanticweb.org, 2002.

5. EODM - Eclipse project, www.eclipse.org/emft/projects/eodm/
6. J. M. Favre: Foundations of Meta-Pyramids: Languages vs. Metamodels, Episode II:

Story of Thotus the Baboon, Dagstuhl, Germany, 2004.
7. D. S. Frankel: Model Driven Architecture – Applying MDA™ to Enterprise Computing,

Wiley, 2003.
8. T. Gardner et al.: A review of OMG MOF 2.0 QVT Submissions and Recommendations

towards the final Standard, MetaModelling for MDA Workshop, 2003.
9. Generative Modeling Tools (GMT) - Eclipse project, http://www.eclipse.org/gmt/
10. N. Guarino: Understanding, Building, and Using Ontologies. Proceedings of Tenth

Knowledge Acquisition for Knowledge-Based Systems Workshop, 1996.
11. D. Harel, B. Rumpe: Meaningful Modeling: What’s the Semantics of “Semantics”?,

IEEE Computer, Volume 37, No. 10, pp. 64-72, IEEE, 2004.
12. IDEAS: A Gap Analysis, www.ideas-roapmap.net, 2003.
13. Jena 2 A Semantic Web Framework, http://jena.sourceforge.net
14. I. Kurtev, J. Bézivin, M. Aksit: Technological Spaces: An Initial Appraisal, Int. Feder-

ated Conference (DOA, ODBASE, CoopIS), Industrial Track, Irvine, 2002.
15. M. Missikoff et al.: A Controlled Language for Semantic Annotation and Interoperability

in e-Business Applications, Workshop on Semantic Integration, 2003.
16. MDDi - Eclipse project, http://www.eclipse.org/mddi/
17. MODELWARE project, http://www.modelware-ist.org/
18. D. Oberle: Semantic Management of Middleware, Springer, 2005.
19. OMG: Ontology Definition Metamodel, ad/2006-05-01.
20. OMG: Revised Submission for MOF 2.0 QVT RFP (ad/2002-04-10), ad/2005-03-02.
21. J. Steel, J.-M. Jézéquel: Model Typing for Improving Reuse in Model-Driven Engineer-

ing, 8th International Conference MoDELS/UML’05, LNCS, 2005.

