
Augmented Software Cognition

Paul Kogut, Carlos Amaro, Ross Klingensmith
Lockheed Martin Integrated Systems & Solutions, King of Prussia, PA

{paul.a.kogut,carlos.c.amaro,ross.f.klingensmith}@lmco.com

Abstract. This short position paper describes software engineering problems
encountered on large scale systems and provides a vision for future semantic-
based solutions that are being investigated in the Lockheed Martin Software
Technology Initiative.

1 The Software Cognition Problem

In October 2005 Lockheed Martin Integrated Systems and Solutions (IS&S) earned
the Software Engineering Institute (SEI) Capability Maturity Model Integration®
(CMMI) Maturity Level 5. CMMI Level 5 defines industry best practices for
integrated systems and software engineering. Based on the CMMI philosophy of
continuous process improvement, LM IS&S recently formed a Software Technology
Initiative (STI) that includes academic partners. STI will explore a variety of research
directions that will meet the productivity and quality challenges of large scale
software engineering in the future. One STI research area is software cognition.

Software engineers suffer from information overload just like many other knowledge
workers (e.g., intelligence analysts, medical researchers…). Large software projects
have information scattered throughout requirements and design documents, UML
models, product manuals and code. It is difficult to understand the system as a whole.
Software engineers spend too much time finding the right information. This complex
interdependent information contains domain/application specific jargon which a
software engineer often has to learn for each project they get assigned to.
Misinterpretations of this jargon due to semantic ambiguity and inconsistencies lead
to design errors and code defects. The application specific jargon found in software
artifacts also inhibits reuse and incurs a large cost for transferring knowledge
between:

• systems engineers and software engineers
• current project team members and new team members
• developers, operations personnel and software maintainers

Only a limited amount of knowledge about a system is represented in modeling
languages such as UML and SysML[1]. Most knowledge remains in free text
(requirements statements, design documents, comments in code and UML models,
email…). As a result of this large amount of text, engineers spend a lot of time
looking for what they need to know. Also, consistency and completeness checking

(e.g., design reviews and peer reviews) is subjective, time consuming and subject to
the cognitive limitations of humans.

2 Solving the Software Cognition Problem

We believe that a combination of Semantic Web ontologies, automated reasoning and
human language technology is part of the answer to the software cognition problem
described in the previous section. The goal is to improve human understanding of
complex systems by delegating some of the thinking to the machine. In the first phase
we plan to focus on reducing the effort to find relevant info in software artifacts. In
the second phase we plan to focus on semantics-based development where ontologies
are used early in the life-cycle to prevent errors and reduce knowledge transfer
inefficiencies.

The approach in phase 1 is to investigate the application of Question Answering (QA)
technology [2] to pre-existing software artifacts. Traditional information retrieval
approaches (e.g., Google) return lists of possibly relevant documents that the user still
has to read through. QA systems provide short direct answers to questions ranging
from simple factoids (e.g., What is the performance budget for target query
processing?) to more essay-like questions (e.g., What functionality does the system
provide for sensor fusion?). QA systems apply various combinations of natural
language processing, information retrieval and automated reasoning techniques.
Semantic Web based QA systems such as Aqualog [3] have the added advantage of
querying across unstructured text and structured sources (e.g., UML models).

Figure 1 shows a conceptual architecture for an Augmented Software Cognition
(ASC) system. The basic idea is to input various forms of textual software artifacts
and generate ontologies and knowledge bases that can be used to answer questions
from the software engineer and eventually reason about consistency [4]. The ASC
system would provide a layer on top of existing Model Driven Architecture (MDA)
tools that support UML and SysML.

The ASC project is in its early stages. Initial efforts are focused on understanding the
kinds of questions that would benefit software engineers. The test data consists of
requirements and design documents from an existing product line architecture in the
aerospace domain. The approach is to implement a simple prototype with a mature
QA system such as Power Answer [5]. We also plan to investigate dialog–based QA
technology such as HITIQA [6].

Software engineer

Automated
Question Answering and
Consistency Reasoning

System

Application Domain
Knowledge Capture Tool

R
ef

er
en

ce
K

no
w

le
dg

e
so

ur
ce

s

Model Driven Architecture Tools

Text (Concept of Operations, requirements, design,
commercial software manuals, code comments, APIs,

variable and method names…)

Ontologies, facts

query models

Figure 1: Augmented Software Cognition Architecture

The approach in phase 2 is to investigate semantic-based development. Ontology
development would begin in the earliest phases of system definition. Proactive
consistency checking tools will prevent engineers from making semantic mistakes
from requirements all the way to code and test cases. The tools would force you to use
terminology from the existing project ontologies or extend the ontologies as the
system is elaborated. These tools would be designed to be interactive and user
friendly by insulating the engineer from OWL details. The goal is to achieve semantic
traceability from requirements and design assumptions down to method and
parameter names. A semantic infrastructure across all software artifacts would
support advanced forms of question answering and quality assurance and shift some
of the cognitive burden from the engineer to the machine.

Acknowledgments. The material in this paper is based on work supported by the
Lockheed Martin Software Technology Initiative.

References

1. SysML http://www.omgsysml.org
2. Strzalkowski, T., Harabagiu, S., editors, Advances in Open Domain Question

Answering, Springer, 2006
3. Aqualog http://kmi.open.ac.uk/technologies/aqualog/
4. Baclawski, K., Kokar, M., Waldinger, R., Kogut P., “Consistency Checking of

Semantic Web Ontologies,” 1st International Semantic Web Conference (ISWC
2002), Sardinia, Italy, June 2002.

5. LCC Power Answer http://www.languagecomputer.com/solutions/index.html
6. Strzalkowski, T., Small, S., Hardy, H., Yamron, B., Liu, T., Kantor, P., Ng, K.,

Wacholder, N., “HITIQA: A Question Answering Analytical Tool” 1st Int.
Intelligence Analysis Conference, May 2005

