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Abstract. In Inductive Logic Programming (ILP), the recent shift of
attention from program synthesis to knowledge discovery resulted in ad-
vanced relational data mining techniques that are practically applicable
for discovering knowledge in relational databases. This paper gives a brief
introduction to ILP, presents the state-of-the-art ILP techniques for re-
lational knowledge discovery and outlines recent approaches to relational
subgroup discovery.

1 Introduction

Inductive logic programming (ILP) [33, 36, 26, 12] is a research area that has its
roots in inductive machine learning and logic programming. ILP research aims
at a formal framework as well as practical algorithms for inductive learning of
relational descriptions that typically have the form of logic programs. From logic
programming, ILP has inherited its sound theoretical basis, and from machine
learning, an experimental approach and orientation towards practical applica-
tions. ILP research has been strongly in
uenced also by Computational learning
theory, and recently, also by Knowledge Discovery in Databases (KDD) [15]
which led to the development of new techniques for relational data mining.

In general, an ILP learner is given an initial theory B (background knowl-
edge) and some evidence E (examples), and its aim is to induce a theory H
(hypothesis) that together with B explains some properties of E. In most cases
the hypothesis H has to satisfy certain restrictions, which we shall refer to as
a bias. Bias includes prior expectations and assumptions, and can therefore be
considered as the logically unjusti�ed part of the background knowledge. Bias is
needed to reduce the number of candidate hypotheses. It consists of the language
bias L, determining the hypothesis space, and the search bias which restricts the
search of the space of possible hypotheses.

This paper �rst gives a brief introduction to ILP and presents a selection of
recently developed ILP techniques for relational data mining [12], followed by
an outline of recent approaches to relational subgroup discovery. The overview
is restricted to techniques satisfying the strong criterion formulated for machine
learning by Michie [31] that requires explicit symbolic form of induced descrip-
tions.



2 State-of-the-art in ILP

This section brie
y introduces two basic theoretical settings, gives pointers to
successful ILP applications and presents recent technological developments in
the area, categorized into the two main theoretical settings.

2.1 ILP problem speci�cation

An inductive logic programming task can be formally de�ned as follows:

Given:

� a set of examples E
� a background theory B
� a language bias L that de�nes the clauses allowed in hypotheses
� a notion of explanation

Find: a hypothesis H � L which explains the examples E with respect to
the theory B.

This de�nition needs to be instantiated for di�erent types of ILP tasks [36].
The instantiation will concern the representation of training examples, the choice
of a hypothesis language and an appropriate notion of explanation. By expla-
nation we here refer to an acceptance criterion of hypotheses: the hypothesis
explains the data if it satis�es a certain user-de�ned criterion w.r.t. the data.
We will discuss some formal acceptance criteria used in di�erent ILP settings,
but we also need to bear in mind that ILP aims at the induction of hypotheses
that are expressed in an explicit symbolic form, that can be easily interpreted by
the user/expert and may contribute to the better understanding of the problem
addressed, ideally forming a piece of new knowledge discovered from the data.

2.2 ILP settings

The state-of-the-art ILP settings are overviewed below. For the underlying the-
ory see [36, 37]. For a practical introduction to ILP see [26].

Predictive ILP Predictive ILP is the most common ILP setting, ofter referred
to as normal ILP, explanatory induction, discriminatory induction, or strong

ILP. Predictive ILP is aimed at learning of classi�cation and prediction rules.
This ILP setting typically restricts E to ground facts, and H and B to sets of
de�nite clauses. The strict notion of explanation in this setting usually denotes
coverage and requires global completeness and consistency.

Global completeness and consistency implicitly assume the notion of inten-
sional coverage de�ned as follows. Given background theory B, hypothesisH and
example set E, an example e 2 E is (intensionally) covered by H if B [H j= e.
Hypothesis H is (globally) complete if 8e 2 E+ : B [H j= e. Hypothesis H is
(globally) consistent if 8e 2 E� : B [H 6j= e.



Given the restriction to de�nite theories T = H [ B, for which there exists
a unique least Herbrand model M(T ), and to ground atoms as examples, this is
equivalent to requiring that all examples in E+ are true in M(B [H) [36].

By relaxing the notion of explanation to allow incomplete and inconsistent
theories that satisfy some other acceptance criteria (predictive accuracy, sig-
ni�cance, compression), the predictive ILP setting can be extended to include
learning of classi�cation and prediction rules from imperfect data, as well as
learning of logical decision trees [1]. In a broader sense, predictive ILP incorpo-
rates also �rst-order regression [22] and constraint inductive logic programming

[40] for which again di�erent acceptance criteria apply.

Descriptive ILP Descriptive ILP is sometimes referred to as con�rmatory

induction, non-monotonic ILP, description learning, or weak ILP. Descriptive
ILP is usually aimed at learning of clausal theories [7]. This ILP setting typically
restricts B to a set of de�nite clauses, H to a set of (general) clauses, and E to
positive examples. The strict notion of explanation used in this setting requires
that all clauses c in H are true in some preferred model of T = B[E, where the
preferred model of T may be, for instance, the least Herbrand modelM(T ). (One
may also require the completeness and minimality of H , where completeness
means that a maximally general hypothesis H is found, and minimality means
that the hypothesis does not contain redundant clauses.)

By relaxing the strict notion of explanation used in clausal discovery [7] to
allow for theories that satisfy some other acceptance criteria (similarity, associa-
tivity, interestingness), descriptive ILP can be extended to incorporate learning

of association rules [2], �rst-order clustering [6, 13, 23], database restructuring

[16, 42] subgroup discovery [45], learning qualitative models [21] and equation dis-

covery [10].

An illustrative example Consider a problem of learning family relations
where the predictive knowledge discovery task is to de�ne the target relation
daughter(X,Y), which states that person X is a daughter of person Y, in terms
of relations de�ned in background knowledge B. Let the training set E consist of
positive and negative examples for the target predicate daughter/2. A positive
example e 2 E+ provides information known to be true and should be entailed
by the induced hypothesis. A negative example e 2 E� provides information
that is known not to be true and should not be entailed.

E+ = fdaughter(mary,ann), daughter(eve,tom)g
E� = fdaughter(tom,ann), daughter(eve,ann)g
B = fmother(ann,mary), mother(ann,tom), father(tom,eve),

father(tom,ian), female(ann), female(mary), female(eve),
parent(X,Y) mother(X,Y), parent(X,Y) father(X,Y),
male(pat), male(tom)g



If the hypothesis language L contains all de�nite clauses using the predicate
and functor symbols appearing in the examples and background knowledge, a
predictive ILP system can induce the following clause from E+, E� and B:

daughter(X,Y) female(X), parent(Y,X).

Alternatively, a learner could have induced a set of clauses:

daughter(X,Y) female(X), mother(Y,X).
daughter(X,Y) female(X), father(Y,X).

In descriptive knowledge discovery, given E+ and B only, an induced theory
could contain the following clauses:

 daughter(X,Y), mother(X,Y).
female(X) daughter(X,Y).
mother(X,Y); father(X,Y) parent(X,Y).

One can see that in the predictive knowledge discovery setting classi�cation
rules are generated, whereas in the descriptive setting database regularities are
derived.

Other ILP settings There has been a suggestion [8] of how to integrate the two
main settings of predictive and descriptive ILP. In this integrated framework the
learned theory is a combination of (predictive) rules and (descriptive) integrity
constraints that restrict the consequences of these rules.

Other ILP settings have also been investigated, the most important being
relational instance-based learning [14]. Excellent predictive results have been
achieved by the relational instance-based learner RIBL [14] in numerous clas-
si�cation and prediction tasks. Recently, �rst-order reinforcement learning [11]
and �rst-order Bayesian classi�er [18] have also been studied. Since these ILP
settings do not involve hypothesis formation in explicit symbolic form, the devel-
oped techniques do not qualify as techniques for relational knowledge discovery.

3 Relational Data Mining Techniques

This section reviews the state-of-the-art relational data mining techniques most
of which have already shown their potential for use in real-life applications. The
overview is limited to recent Relational Data Mining developments, aimed at
the analysis of real-life databases [27, 12]. These developments have a marketing
potential in the prosperous new areas of Data Mining and Knowledge Discovery
in Databases. It is worthwhile noticing that none of the reviewed techniques be-
longs to programming assistants which have a much smaller marketing potential
and a limited usefulness for solving real-life problems in comparison with ILP
data mining tools and techniques.



3.1 Predictive RDM techniques

Learning of classi�cation rules. This is the standard ILP setting that has
been used in numerous successful predictive knowledge discovery applications.
The well-known systems for classi�cation rule induction include Foil [39]1, Golem
[35] and Progol [34]. Foil is e�cient and best understood due to its similarity to
Clark and Niblett's CN2. On the other hand, Golem and Progol are champions
concerning successful ILP applications, despite the fact that they are substan-
tially less e�cient. Foil is a top-down learner, Golem is a bottom-up learner,
and Progol uses a combined search strategy. All are mainly concerned with
single predicate learning from positive and negative examples and background
knowledge; in addition, Progol can also be used to learn from positive examples
only. They use di�erent acceptance criteria: compression, coverage/accuracy and
minimal description length, respectively. The system LINUS [25, 26], developed
from a learning component of QuMAS [32], introduced the propositionalization
paradigm by transforming an ILP problem into a propositional learning task.

Induction of logical decision trees. The system Tilde [1] belongs to Top-
down induction of decision tree algorithms. It can be viewed as a �rst-order up-
grade of Quinlan's C4.5, employing logical queries in tree nodes which involves
appropriate handling of variables. The main advantage of Tilde is its e�ciency
and capability of dealing with large numbers of training examples, which are
the well-known properties of Tilde's propositional ancestors. Hence Tilde cur-
rently represents one of the most appropriate systems for predictive knowledge
discovery. Besides the language bias, Tilde allows for lookahead and prepruning
(according to the minimal number of examples covered) de�ned by parameter
setting.

First-order regression. The relational regression task can be de�ned as fol-
lows: Given training examples as positive ground facts for the target predicate
r(Y;X1; :::; Xn), where the variable Y has real values, and background knowl-
edge predicate de�nitions, �nd a de�nition for r(Y;X1; :::; Xn), such that each
clause has a literal binding Y (assuming that X1; :::; Xn are bound). Typical
background knowledge predicates include less-or-equal tests, addition, subtrac-
tion and multiplication. An approach to relational regression is implemented in
the system FORS (First Order Regression System) [22] which performs top-down
search of a re�nement graph. In each clause, FORS can predict a value for the
target variable Y as the output value of a background knowledge literal, as a
constant, or as a linear combination of variables appearing in the clause (using
linear regression).

Inductive Constraint Logic Programming. It is well known that Con-
straint Logic Programming (CLP) can successfully deal with numerical con-
straints. The idea of Inductive Constraint Logic Programming (ICLP) [40] is to
bene�t from the number-handling capabilities of CLP, and to use the constraint
solver of CLP to do part of the search involved in inductive learning. To this
end a maximally discriminant generalization problem in ILP is transformed to

1 A successor of Foil, the system Ffoil, can successfully be used for inducing relational
de�nitions of functions.



an equivalent constraint satisfaction problem (CSP). The solutions of the orig-
inal ILP problem can be constructed from the solutions of CSP, which can be
obtained by running a constraint solver on CSP.

3.2 Descriptive RDM techniques

Learning of clausal theories and association rules. In discovering full
clausal theories, as done in the system Claudien [7], each example is a Herbrand
model, and the system searches for the most general clauses that are true in all
the models. Clauses are discovered independently from each other, which is a
substantial advantage for data mining, as compared to the learning of classi�-
cation rules (particularly learning of mutually dependent predicates in multiple
predicate learning). In Claudien, search of clauses is limited by the language
bias. Its acceptance criterion can be modi�ed by setting two parameters: the re-
quested minimal accuracy and minimal number of examples covered. In another
clausal discovery system, Primus [17], the best-�rst search for clauses is guided
by heuristics measuring the \con�rmation" of clauses. The Claudien system was
further extended to Warmr [2] that enables learning of association rules from
multiple relations.

First-order clustering. Top-down induction of decision trees can be viewed
as a clustering method since nodes in the tree correspond to sets of examples
with similar properties, thus forming concept hierarchies. This view was adopted
in C0.5 [6], an upgrade of the Tilde logical decision tree learner. A relational
distance-based clustering is presented also in [23]. An early approach combining
learning and conceptual clustering techniques was implemented in the system
Cola [13]. Given a small (sparse) set of classi�ed training instances and a set of
unclassi�ed instances, Cola uses Bisson's conceptual clustering algorithm KBG
on the entire set of instances, climbs the hierarchy tree and uses the classi�ed
instances to identify (single or disjunctive) class descriptions.

Database restructuring. The system Fender [42] searches for common
parts of rules describing a concept, thus forming subconcept de�nitions to be
used in the refurmulation of original rules. The result is a knowledge base with
new intermediate concepts and deeper inferential structure than the initial \
at"
rulebase. The system Index [16] is concerned with the problem of determining
which attribute dependencies (functional or multivalued) hold in the given re-
lational database. The induced attribute dependencies can be used to obtain a
more structured database. Both approaches can be viewed as doing predicate
invention, where (user selected) invented predicates are used for theory restruc-
turing.

Subgroup discovery. The subgroup discovery task is de�ned as follows:
given a population of individuals and a property of those individuals we are
interested in, �nd the subgroups of the population that are statistically \most
interesting", i.e., are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest. The sys-
tem Midos [45] guides the top-down search of potentially interesting subgroups
using numerous user-de�ned parameters.



Learning qualitative models of dynamic systems. The automated con-
struction of models of dynamic system may be aimed at qualitative model dis-
covery. A recent qualitative model discovery system [21], using a Qsim-like repre-
sentation, is based on Coiera's Genmodel to which signal processing capabilities
have been added.

Equation discovery. The system LAGRANGE [10] discovers a set of dif-
ferential equations from an example behavior of a dynamic system. Example
behaviors are speci�ed by lists of measurements of a set of system variables,
and background knowledge predicates enable the introduction of new variables
as time derivatives, sines or cosines of system variables. New variables can be
further introduced by multiplication.

Inductive databases. A tighter connection with deductive database tech-
nology has been recently advocated by Luc De Raedt [4, 5] introducing an induc-
tive database mining query language that integrates concepts from ILP, CLP,
deductive databases and meta-programming into a 
exible environment for rela-
tional knowledge discovery in databases. Since the primitives of the language can
easily be combined with Prolog, complex systems and behaviour can be speci�ed
declaratively. This type of integration of concepts from di�erent areas of com-
putational logic can prove extremely bene�cial for RDMn the future. It can lead
to a novel ILP paradigm of inductive logic programming query languages whose
usefulness may be proved to be similar to those of constraint logic programming.

3.3 Some challenges in RDM research

ILP has already developed numerous useful techniques for relational knowledge
discovery. A recent research trend in ILP is to develop algorithms implementing
all the most popular machine learning techniques in the �rst-order framework.
Already developed techniques upgrading propositional learning algorithms in-
clude �rst-order decision tree learning [1], �rst-order clustering [6, 23], relational
genetic algorithms [20], �rst-order instance-based learning [14], �rst-order rein-
forcement learning [11] and �rst-order Bayesian classi�er [18]. It is expected that
the adaptation of propositional machine learning algorithms to the �rst-order
framework will continue also in the areas for which �rst-order implementations
still do not exist. This should provide a full scale methodology for relational
data mining based on future ILP implementations of �rst-order Bayesian net-
works, �rst-order neural networks, possibly �rst-order fuzzy systems and other
ILP upgrades of propositional machine learning techniques.

4 Relational Subgroup Discovery and Related Work

4.1 Relational Subgroup Discovery

In the newly emerging �eld of subgroup discovery two most important systems
for discovering subgroups are Explora [24] and Midos [45]. The �rst system
treats the learning task as a single relation problem, i.e., all the data are as-
sumed to be available in one table (relation), while the second one extends this



task to multi-relational databases, which is related to a number of other learn-
ing tasks [7, 30, 46], mostly in the ILP [12, 26]. In both systems the propositional
(attribute-value) language is used to describe the induced hypotheses, i.e., dis-
covered subgroups are de�ned as conjunctions of features (attributes values).
The most important features of Explora and Midos concern the use of heuristics
for subgroup discovery; the heuristics are outlined below.

We have developed a relational subgroup discovery system RSD [28] on prin-
ciples that employ the following main ingredients: exhaustive �rst-order feature
construction, elimination of irrelevant features, an implementation of a rela-
tional rule learner, the weighted covering algorithm and incorporation of example
weights into the weighted relative accuracy heuristic, probabilistic classi�cation,
and area under ROC rule set evaluation.

As the input, RSD expects (a) a relational database containing one main table
(relation) where each row corresponds to a unique individual and one attribute
of the main table is speci�ed as the class attribute, and (b) a mode-language
de�nition used to construct �rst-order features.

The main output of RSD is a set of subgroups whose class-distributions di�er
substantially from those of the complete data-set. The subgroups are identi�ed
by conjunctions of symbols of pre-generated �rst-order features. As a by-product,
RSD also provides a �le containing the mentioned set of features and o�ers to
export a single relation (as a text �le) with rows corresponding to individuals and
�elds containing the truth values of respective features for the given individual.
This table is thus a propositionalised representation of the input data and can
be used as an input to various attribute-value learners.

An important feature of the RSD algorithm is the use of the weighted covering
algorithm. In the classical covering algorithm of rule-set induction, only the �rst
few induced rules may be of interest as subgroup descriptors with su�cient cov-
erage, since subsequently induced rules are induced from biased example subsets,
i.e., subsets including only positive examples not covered by previously induced
rules. This bias constrains the population for subgroup discovery in a way that
is unnatural for the subgroup discovery process which is, in general, aimed at
discovering interesting properties of subgroups of the entire population. In con-
trast, the subsequent rules induced by the weighted covering algorithm allow for
discovering interesting subgroup properties of the entire population.

The weighted covering algorithm is implemented in such a way that covered
positive examples are not deleted from the current training set. Instead, in each
run of the covering loop, the algorithm stores with each example a count how
many times (with how many rules induced so far) the example has been covered.
Weights of covered examples decrease according to the formula e(i) = 1

i+1
, where

e(i) is the weight of an example being covered i times.

A variant of the weighted covering algorithm has been used also in the con-
text of the SD subgroup discovery algorithm [19], and in the CN2-SD subgroup
discovery algorithm [28].



4.2 Measures of Interestingness

Various rule evaluation measures and heuristics have been studied for subgroup
discovery, aimed at balancing the size of a group (referred to as factor g in
[24]) with its distributional unusualness (referred to as factor p). The proper-
ties of functions that combine these two factors have been extensively studied
(the \p-g-space"). Similarly, the weighted relative accuracy heuristic, de�ned as
WRAcc(Class  Cond) = p(Cond):p(ClassjCond) � p(Class)) and used in
[44], trades o� generality of the rule (p(Cond), i.e., rule coverage) and relative
accuracy (p(ClassjCond)�p(Class)). Besides such `objective' measures of inter-
estingness, some `subjective' measure of interestingness of a discovered pattern
can be taken into the account, such as actionability (`a pattern is interesting if
the user can do something with it to his or her advantage') and unexpectedness
(\a pattern is interesting to the user if it is surprising to the user") [41].

4.3 Subgroup Evaluation Measures

Evaluation of induced subgroups in the ROC space [38] shows classi�er perfor-
mance in terms of false alarm or false positive rate FPr = FP

TN+FP
(plotted

on the X-axis) that needs to be minimized, and sensitivity or true positive rate

TPr = TP

TP+FN
(plotted on the Y -axis) that needs to be maximized. The ROC

space is appropriate for measuring the success of subgroup discovery, since sub-
groups whose TPr=FPr tradeo� is close to the diagonal can be discarded as
insigni�cant. The standard approach is to use the area under the ROC convex
hull de�ned by subgroups with the best TPr=FPr tradeo� as a quality measure
for comparing the success of di�erent learners.
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