
Using Ontologies to Discover Domain-Level

Web Usage Profiles

Honghua (Kathy) Dai and Bamshad Mobasher
{hdai,mobasher}@cs.depaul.edu

School of Computer Science, Telecommunication, and Information Systems,
DePaul University, Chicago, Illinois, USA

Abstract. Usage patterns discovered through Web usage mining are ef-
fective in capturing item-to-item and user-to-user relationships and sim-
ilarities at the level of user sessions. Without the benefit of deeper do-
main knowledge, such patterns provide little insight into the underlying
reasons for which such items or users are grouped together. This can
lead to a number of important shortcomings in personalization systems
based on Web usage mining or collaborative filtering. For example, if
a new item is recently added to the Web site, it is not likely that the
pages associated with the item would be a part of any of the discovered
patterns, and thus these pages cannot be recommended. Keyword-based
content-filtering approaches have been used to enhance the effectiveness
of collaborative filtering systems by focusing on content similarity among
items or pages. These approaches, however, are incapable of capturing
more complex relationships at a deeper semantic level based on different
types of attributes associated with structured objects. This paper rep-
resents work-in-progress towards creating a general framework for using
domain ontologies to automatically characterize usage profiles containing
a set of structured Web objects. Our motivation is to use this framework
in the context of Web personalization, going beyond page- or item-level
constructs, and using the full semantic power of the underlying ontology.

1 Introduction and Problem Statement

The goal of Web usage mining [24] is to capture and model the behavioral
patterns and profiles of users interacting with aWeb site. The discovered patterns
are usually represented as collections of pages that are frequently accessed by
groups of users with common needs or interests. Such patterns can be used to
better understand behavioral characteristics of visitor or user segments, improve
the organization and structure of the site, and create a personalized experience
for visitors by providing dynamic recommendations [25, 7, 3, 15, 9, 10, 22].

At a conceptual level, there may be many different kinds of objects within
a given site that are accessible to users. At the physical level, these objects
may be represented by one or more Web pages. For example, consider a site
containing information about movies. This site may contain pages related to
the movies themselves, actors appearing in the movies, directors, studios, etc.

Conceptually, each of these entities represents a different type of semantic object.
During a visit to this site, a user may access several of these objects together
during a session.

Given the session-based Web usage data, a variety of mining techniques can
be used to discover patterns, including clustering, association-rule or sequential
pattern discovery. For example, clustering of user sessions may result in the
discovery of a group of similar sessions based on pages commonly accessed within
those sessions. In order to find an aggregate representation of user interests
captured by such a cluster, one might derive the cluster centroid containing a
set (or a vector) of pages that are common among cluster elements. In [18,
17], we called these aggregate representations of session clusters aggregate usage
profiles and used these profiles for Web personalization.

Specifically, each user session s can be viewed as an n-dimensional vector
over the space of all pages, i.e.,

t = 〈w(p1, s), w(p2, s), . . . , w(pn, s)〉 ,
where w(pi, t) is a weight, in session s, associated with the page pi. The weights
can be binary representing the existence or non-existence of a page access in the
session, or they can be some value representing the user’s interest on the page
(e.g., the page stay time). Applying data mining techniques, such as clustering,
to this space may result in a set CL = {cl1, cl2, . . . , clk} of session clusters, where
each cli is a subset of the set of sessions.

Given a session cluster cl, we can construct a usage profile prcl as a set of
pageview-weight pairs by computing the centroid of cl:

prcl = {〈p, weight(p, prcl)〉 | weight(p, prcl) ≥ µ}
where

– the significance weight, weight(p, prcl), of the page p within the usage profile
prcl is given by

weight(p, prcl) =
1
|cl| ·

∑
s∈cl

w(p, s);

– w(p, s) is the weight of page p in session s ∈ cl; and
– the threshold µ is used to focus only on those pages in the cluster that appear
in a sufficient number of sessions in that cluster.

Each such profile, in turn, can be represented as a vector in the original n-
dimensional space. The aggregate representation of common usage patterns as
sets or vectors of pages makes such usage profiles quite useful for personalization
and collaborative filtering [12]: given a new user, u who has accessed a set of
pages, Pu, so far, we can measure the similarity of Pu to the discovered profiles,
and recommend to the user those pages in matching profiles which have not yet
been accessed by the user.

While in the above discussion we have focused on clustering as the primary
data mining technique for the discovery of usage profiles, it should be noted that

a variety of other techniques can also be used. For example, frequent itemsets
discovered as part of association rule mining [1] on the usage data, would also
lead to sets of items or pages representing usage profiles [16].

One problem with the above approach is that the profiles only capture com-
mon usage patterns at the page level. They do not reflect the underlying reasons
why the group of users represented by the profile are interested in the accessed
pages. This can lead to a number of important shortcomings in personalization
systems based on Web usage mining or collaborative filtering. For example, if
a new item is recently added to the Web site, it is not likely that the pages
associated with the item would be a part of any of the discovered patterns (due
to a lack of sufficient usage level data). Yet, a user who fits one of the profiles
may indeed be interested in the new item, because the underlying domain char-
acteristics of the item might correspond to those of items in one or more of the
profiles.

In the movie site example mentioned above, consider the situation where a
discovered usage profile may contain pages related to a number of movies many
of which are from the same genre and have been directed by the same director.
Using the above standard approach for personalization, pages appearing in this
profile may be recommended to a user who has accessed some of the other
pages in that profile. However, if a new movie is added to the site with similar
properties, it will not appear in any profile until a sufficient number of users have
accessed this movie together with other similar movies. This problem is often
coined as the “new item problem” in collaborative filtering.

A common approach to resolving this problem has been to integrate content
characteristics of pages with the usage patterns [6, 20, 21, 19]. Generally, in these
approaches, keywords are extracted from the content on the Web site and are
used to either index pages by content or classify pages into various content cat-
egories. In the context of personalization, this approach would allow the system
to recommend pages to a user, not only based on a matching usage profile, but
also (or alternatively) based on the content similarity of these pages to the pages
user has already visited.

Keyword-based approaches, however, are incapable to capturing more com-
plex relationships among objects at a deeper semantic level based on the inherent
properties associated with these objects. In our movie site example, the above
content-based filtering approach would allow the system to recommend other
movies based on similarities in their textual descriptions or other content char-
acterisitcs. But, the system would have considerable difficulty in recommending,
for example, unrelated movies from the same genre, having the same main actors
as those already accessed by the user, etc. To be able recommend different types
of complex objects using their underlying properties and attributes, the sys-
tem must be able to rely on the characterization of user segments and objects,
not just based on keywords, but at a deeper semantic level using the domain
ontologies for the objects.

This paper represents work-in-progress towards creating a general framework
for using domain ontologies to automatically characterize usage profiles contain-

ing a set of structured Web objects. Our motivation is to use this framework
in the context of Web personalization, going beyond page-level constructs, and
using the full semantic power of the underlying ontology. This effort involves the
following tasks:

1. Given a page in the Web site, we must extract domain-level structured
objects as semantic entities contained within this page. This task involves
the automatic extraction and classification of objects of different types into
classes based on the underlying domain ontologies. Our goal is to create
a representation for a usage profile discovered through Web usage mining
process (e.g., through clustering or association rule mining), not simply as a
set of pages, but as a set of structured objects embedded in those pages.

2. Given a set of structured objects representing a usage profile, we must create
an aggregated representation as a set of pseudo objects each characterizing
objects of different types occurring commonly across the user sessions. We
call such a set of aggregate pseudo objects a Domain-level Aggregate Profile.
Thus, a domain-level aggregate profile characterizes a collection of similar
users based on the common properties of objects in the domain ontology
that were accessed by these users.

We begin by providing a formal framework for the representation of the do-
main ontology and for creating aggregate representations of domain-level objects.
We then discuss how the resulting aggregate profiles can be used in the context
of personalization.

2 Representing Domain Ontologies for Web Objects

There has been much recent work in designing ontology languages to formally
represent knowledge on the Web, such as RDFS [2] and DAML+OIL [13]. The
ontology language DAML+OIL has been extended to include formal semantics
and reasoning support by mapping to the description logic SHOQ(D) [14].

Generally speaking, in our current work we adopt the syntax and semantics of
SHOQ(D) to represent domain ontologies. In SHOQ(D), the notion of concrete
datatype is used to specify literal values and individuals which represent real
objects in the domain ontology. Moreover, concepts can be viewed as sets of
individuals, and roles are binary relations between a pair of concepts or between
concepts and datatypes. The detailed formal definitions for concepts and roles
are given in [11, 14]. Because our current work does not focus on reasoning tasks
such as deciding subsumption and membership, we do not focus our discussion on
these operations. The reasoning apparatus in SHOQ(D) can be used to provide
more intelligent data mining services as part of our future work.

In SHOQ(D), a concept has the meaning of a set of individuals, which in
our context are called “objects”. The notion of a concept is quite general and
may encompass a heterogeneous set of objects with different properties (roles)
and structures. In the present work, we are interested in deriving aggregate
representations of a group of objects that have a homogenous concept structure

(i.e., have similar properties and data types). For example, we may be interested
in a group of movie objects, each of which has specific values for properties such
as “year”, “genre”, “actors”, etc. For the purpose of presentation, we call such a
group of objects a class. Thus, in our framework, the notion of a class represents
a restriction of the notion of a concept in SHOQ(D).

More specifically, our notion of class can be defined in the context of SHOQ(D)
as follows.

Definition 1 A class C I (I is the set of all individuals in the domain
ontology) is a set of objects where there exists a set of roles R, such that,
∀r ∈ R,Dr = {v2 | (v1, v2) ∈ r}, and C ∀R.Dr.

We call the roles that characterize the class C attributes. These attributes
together define the internal properties of the objects in C or relationships with
other concepts that involve the objects in C. And we denote the domain of values
of the attribute r as Dr. Furthermore, because we are specifically interested in
aggregating objects at the attribute level, we extend the notion of a role to
include a domain-specific combination function and an ordering relation.

More formally, a class C is characterized by a finite set of attributes AC ,
where each attribute a ∈ AC is defined as follows.

Definition 2 Let C be a class in the domain ontology. An attribute a ∈ AC is
a 4-tuple, a = 〈Ta, Da, ψa,�a 〉, where
– Ta is the type for the values for the attribute a.
– Da is the domain of the values for a;
– �a is an ordering relation among the values in Da; and
– ψa is a combination function for the attribute a.

The “type” of an attribute in the above definition may be a concrete datatype
or it may be a set of objects (individuals) belonging to another class. Given a
type Ta for an attribute a, we have Da dom(Ta).

In the context of data mining, comparing and aggregating values are essential
tasks. Therefore, ordering relations among values are necessary properties for
attributes. We associate an ordering relation �a with elements in Da for each
attribute a. The ordering relation �a can be null (if no ordering is specified
in the domain of values), or it can define a partial or a total order among the
domain values. For standard types such as values from a continuous range, we
assume the usual ordering. In cases when an attribute a represents a concept
hierarchy, the domain values of a are a set of labels, and �a is a partial order
representing the “is-a” relation.

Furthermore, we associate a data mining operator, called the combination
function ψa, with each attribute a. The combination function ψa defines an ag-
gregation operation among the corresponding attribute values of a set of objects
belonging to the same class. This function is essentially a generalization of the
“mean” or “average” function applied to corresponding dimension values of set
of vectors when computing the centroid vector. In this context, we assume that

the combination function is specified as part of the domain ontology for each at-
tribute of a class. An interesting extension would be to automatically learn the
combination function for each attribute based on a set of positive and negative
examples.

Classes in the ontology define the structural and semantic properties of ob-
jects in the domain which are “instances” of that class. Specifically, each object
o in the domain is also characterized by a set of attributes Ao corresponding to
the attributes of a class in the ontology. In order to more precisely define the
notion of an object as an instance of a class, we first define the notion of an
instance of an attribute.

Definition 3 Given an attribute a = 〈Ta, Da, ψa,�a 〉 and an attribute b =
〈Tb, Db, ψb,�b 〉, b is an instance of a, if Db ⊆ Da, Tb = Ta, ψb = ψa, and �b is a
restriction of �a to Db. The attribute b is a null instance of a, if Db = ∅.
Definition 4 Given a class C with attribute set AC = {aC

1 , a
C
2 , . . . , a

C
n }, we say

that an object o is instance of class C, if o has attributes Ao = {ao
1, a

o
2, . . . , a

o
n}

such that, ao
i is a, possibly null, instance of aC

i , for 1 ≤ i ≤ n.
In the context of SHOQ(D), we can use the concept inclusion axiom {o} C

to denote the “instance-of” relation between o and C. In general, the domain
ontology can be represented as a set of assertions on classes and attributes.

Based on the definitions of attribute and object instances, we can provide a
more formal representation of the combination function ψa. Let c be a class and
{o1, o2, . . . , on} a set of object instances of c. Let a ∈ AC be an attribute of class
c. The combination function ψa can be represented by:

ψa({〈ao1 , w1〉, 〈ao2 , w2〉, . . . , 〈aon , wn〉}) = 〈aagg, wagg〉,
where each aoi belonging to object oi is an instance of the attribute a, and
each wi is a weight associated with the attribute instance aoi representing the
significance of that attribute relative to the other instances. Furthermore, aagg is
a pseudo instance of a meaning that it is an instance of a which does not belong
to a real object in the underlying domain. The weight wagg of aagg is a function
of w1, w2, . . . , wn.

Given a set of object instances, {o1, o2, . . . , on}, of class C, a domain-level
aggregate profile for these instances is obtained by applying the combination
function for each attribute in c to all of the corresponding attribute instances
across all objects o1, o2, . . . , on.

An Example

As an example, let us come back to the movie Web site discussed in the previous
section. The Web site includes collections of pages containing information about
movies, actors, directors, etc. A collection of pages describing a specific movies
might include information such as the movie title, genre, starring actors, director,
etc. An actor or director’s information may include name, filmography (a set of

Fig. 1. The Ontology for a movie Web site

movies), gender, nationality, etc. The portion of domain ontology for this site,
as described, contains the classes Movie, Actor and Director (see Figure 1).
The collection of Web pages in the site represent a group of embedded objects
that are the instances of these classes.

The class Movie has attributes Year, Actor (representing the role “acted
by”), Genre, Director, etc. The Actor, and Director attributes have values that
are other objects in the ontology, specifically, object instances of classes Actor
and Director, respectively. The attribute Year is an example of an attribute
whose datatype is positive integers with the usual ordering. The attribute Genre
has a concrete datatype whose domain values in DGenre are a set of labels (e.g.,
“Romance” and “Comedy”). The ordering relation for �Genre defines a partial
order based on the “is-a” relation among these labels (resulting in a concept
hierarchy of Genre’s a portion of which is shown in Figure 1).

An attribute a of an object o has a domain Da. In cases when the attribute
has unique value for an object,Da is a singleton. For example, consider an object
instance of class Movie, “About a Boy” (see Figure 2). The attribute Actor
contains three objects (H. Grant, R. Weisz and T. Collette) that are instances
of the class Actor (for the sake of presentation we use the Actor’s name to
stand for the object of Actor). Therefore, DActor = {H. Grant, R. Weisz and T.
Collette}. Also, A real object may have values for only some of the attributes. In
this case the other attributes have empty domains. For instance, the attribute
Director in the example has an empty domain, and is thus not depicted in the
figure.

We may, optionally, associate a weight with each value in the attribute do-
main Da (usually in [0, 1]). This may be useful in capturing the relative im-
portance of each attribute value. For example, in a given movie the main actors
should have higher weights than other actors. In our example, the object actor H.

Fig. 2. An Example of an Object in Class Movie

Grant has weight 0.6 and the object Actor Rachel Weisz has weight 0.1. Unless
otherwise specified, we assume that the weight associated with each attribute
value is 1.

In the object o shown in Figure 2, the domain for the attribute Genre
is the set {“Genre-All”, “Comedy”, “Romantic Comedy”, “Kid & Family”}.
The ordering relation �o

Genre is a restriction of �Genre to {Genre-All, Comedy,
Romantic Comedy, Kid & Family}.

Let us now define the combination functions for some of the attributes in class
Movie. Note that the combination functions are only applicable when creating
an aggregate representation of a set of objects. For the attribute Name, we are
interested in all the movie names appearing in the instances. Thus we can define
ψName to be the union operation performed on all the singleton Name attributes
of all movie objects.

The attribute Actor contains a weighted set of objects in class Actor. In
such cases we can use a vector-based weighted mean operation. The domain of
the resulting aggregate attribute instance D′

Actor can be viewed as the union of
the domains of the Actor attributes of the individual Movie objects: D′

Actor =
∪iDActori, and the weight for an object o in D′

Actor is determined by

w′
o =

∑
i wi · wo∑

iwi
.

For example, applying ψActor to {〈{S, 0.7; T, 0.2; U, 0.1}, 1〉, 〈{S, 0.5; T,
0.5}, 0.7〉, 〈{W, 0.6; S, 0.4}, 0.3〉} will result in the aggregate domain D′

Actor of
{〈S, 0.58〉, 〈T, 0.27〉, 〈W, 0.09〉, 〈U, 0.05〉}.

As for the attribute Year, the combination function may create a range of
all the Year values appearing in the objects. Another possible solution is to dis-
cretize the full Year range into decades and find the most common decades that
are in the domains of the attribute. For example, applying ψY ear to {〈{2002},
1>}, 〈{1999}, 0.7〉, 〈{2001}, 0.3〉} may result in an aggregate instance Y ear′ of
attribute Year with D′

Y ear = [1999, 2002].
The attribute Genre of class Movie contains a partial ordering relation

�Genre which represents a concept hierarchy among different Genre labels. Thus,
for each instance object p of Genre, the relation �a

Genre specifies the restriction

of the partial ordering relation to Dp. The combination function, in this case,
can perform tree (or graph) matching to extract the common parts of the con-
ceptual hierarchies among all instances [23]. Given a set of objects {p1, . . . , pn}
of Genre, we can define ψGenre({〈p1, w1〉, 〈p2, w2〉, . . . , 〈pn, wn〉}) = 〈∩iDpi , w

′〉,
where w′ is the average of the weights of instance values in the intersection.
The relation �′

Genre is a restriction of �Genre to ∩iDpi . This function pro-
vides us the common segment of conceptual hierarchy for Genre in the set
of movie instances. For example, applying ψGenre to {{“Romantic Comedy”,
“Kids&Family”}, {“Romance”, “Comedy”}, {“Romance”}}, and assuming that
all weights are 1, will result in an aggregate instance Genre′ of attribute Genre
with the value {“Romance”}.

3 Creating an Aggregated Representation of a Usage
Profile

We now return to our original problem: how to create an aggregate represen-
tation of a discovered usage profile at the domain-level. As noted earlier, a us-
age profile at the page or item level can be viewed as a weighted set (or vec-
tor) of pages. The problem of extracting instances of the ontology classes from
these pages is an interesting problem in its own right and has been studied
extensively (see, for example, [5]). Here we assume that, either using manual
rules, or through supervised learning methods, we can extract various object
instances represented by the pages in the original page- or item-level usage pro-
file. Thus, the usage profile can be transformed into a weighted set of objects:
pr = {〈o1, wo1〉, 〈o2, wo2〉, . . . , 〈on, won〉} in which each oi is an object in the un-
derlying domain ontology and wi represents oi’s significance in the profile pr.
The profile represents a set of objects accessed together frequently by a group of
users (as determined through Web usage mining). Our goal is to create an aggre-
gate representation of this weighted set of objects to characterize the common
interests of the user segment captures by the profile at the domain level.

Given the representation of a profile pr as a weighted set of objects, the
objects in pr may be instances of different classes c1, c2, . . . , ck in the ontology.
The process of creating a domain-level aggregate profile begins by partitioning
pr into collections of objects with each collection containing all objects that are
instances of a specified class (in other words, the process of classifying the object
instances in pr). Let gi = {〈oci

1 , wo
ci
1
〉, . . . , 〈oci

m, wo
ci
m
〉} be the elements of pr that

are instances of the class ci.
Having partitioned pr into k groups of homogeneous objects, g1, . . . , gk, the

problem is reduced to creating aggregate representation of each partition gi.
This task is accomplished with the help of the combination functions for each of
the attributes of ci some of whose object instances are contained in gi. Once the
representatives for every partition of objects are created, we assign a significance
weight to each representative to mark the importance of this group of objects
in the profile. In our current implementation the significance weight for each
representative is computed as the sum of all the object weights in the partition.

Input: A weighted set of objects: O = {〈o1, w1〉, . . . , 〈on, wn〉}
Output: The domain-level aggregate of O: {〈o′1, w′

1〉, . . . , 〈o′k, w′
k〉}

Main Procedure:
Result = ∅
Partition objects in O into g1, g2, . . . , gk,

such that ∀gi,∃ a class cgi , with objects in gi being instances of cgi

For each gi(i = 1, . . . , k) do
Build a pseudo object o′i to be an instance of cgi :

For each attribute a in the attribute set of class cgi do

Let ao′
i be an instance of a in the object o′i:

ao′
i = ψa(gi)

Endfor
Result = Result ∪ {o′i}
w′

i =
∑

ok∈gi
wk

Endfor
Return Result

Fig. 3. The Algorithm DPA for Creating and Aggregate Representation of a Weighted
Set of Objects

However, significance weight can be computed using other numeric aggregation
functions. Figure 3 summarizes the algorithm DPA for creating domain-level
aggregate profiles.

Examples Continued: Generating Domain-Level Aggregate Profiles

We present two examples of transforming usage profiles into domain-level aggre-
gates using ontological information. The first example is based on our hypothet-
ical movie Web site (Figure 1), and the second is based on the results of our
experiments with a real Web site containing real estate property listings.

Suppose we have discovered a Web usage profile and transformed it into a
weighted set of 3 movie objects in the class Movie (see Figure 4). We can
generate a domain-level aggregate representation of these movies by applying
the DPA algorithm to this profile. Because the objects are the instances of the
same class, the DPA algorithm does not have to partition the objects. Thus, we
can directly apply combination functions on each attribute in the class Movie.
The details of combination functions used in this example were described in the
previous section. Figure 5 shows the pseudo object instance representing the
domain-level aggregation of these objects.

Note that the original item-level profile gives us little information about the
reasons why these objects were commonly accesed together. However, after we
characterize this profile at the domain-level, we find some interesting patterns:
they all belong to Genre “Romance”, and the actor S has a high score compared
with other actors. This might tell us that this group of users are interested
particularly in the movies belonging to “Romance” and are particularly fond of
the actor S.

Fig. 4. A Weighted Set of Objects in a Usage Profile from a Movie Web Site

Fig. 5. An Example of Domain-Level Aggregate Profile from a Movie Web site

Our next example is based on a real usage profile discovered from the usage
data belonging to a real estate Web site containing various property listings.
The ontology of the Web site has a single class property. An object which is
the instance of class property represents a real estate property that has been
listed for sale. This ontology is depicted in Figure 6.

In this case, all attributes have atomic values. For example, the attribute
number of bedrooms has a range of values {1, 2, 3, 4, 5, 6} and style of building
has values among {1 Story, 2 Story, Town Home, Ranch}. Figure 6 also shows
an example of a property object instance with the value sets for each attribute
in dashed boxes.

In our experiment, we began by clustering similar user sessions. Then we
generated the usage profiles obtaining the cluster centroids in which each item’s
weight represents the percentage of cluster sessions containing that item. For
example, one of the usage profiles obtained from our experiment is: {〈Property
1,1〉,〈Property 2,0.7〉,〈Property 3,0.18〉,〈Property 4,0.18〉}.

Fig. 6. The Ontology of a Real Estate Web site Containing Property Listings

We used the “weighted average” as our combination function for the at-
tributes containing numeric data. Let wai be the weight associated with instance
ai of attribute a. Because all the attribute instances contain singletons as their
value sets, we can use vai to represent the only value for the instance ai . The
combination function ψa for each of the numeric attributes (Price, Size and
Rooms) gives the value set D′

a of the aggregate instance, as follows:

D′
a =

{∑
i vai × wai∑

iwai

}

For the attribute Location, the combination function computes the union of
all the values in this attribute. In this example, this function returns {Chicago,
Evanston}. For the attribute Style, the combination function computes the most
frequent style values in this attribute. In this case, the function returns {2 Story}.
Finally, we used the same combination function for the attribute Year as the
one used in the class movie of the previous example. Figures 7 and 8 show the
original usage profiles discovered through clustering and the resulting domain-
level aggregate profile, respectively.

After generating domain-level usage profile, we have the information about
the average price, size, number of rooms, as well as the locations, major styles,
and year range. Such information not only enriches the profile with more knowl-
edge about the listed items, but also provides us more possibilities for Web per-
sonalization. In the following section we discuss how we can leverage domain-level
aggregate profiles for Web personalization.

Fig. 7. A Weighted Set of Objects in a Usage Profile from a Real Estate Web Site

Fig. 8. An Example of Domain-Level Aggregate Profile from a Real Estate Web site

4 Web Personalization Based on Domain-Level Usage
Profiles

Domain-level aggregate profiles present users’ interests not just as a set of items
or pages, but in terms of the common underlying properties and relationships
among those items that are captured by object attributes. This fine-grained
domain knowledge enables more powerful approaches to personalization.

We consider the browsing history of the current user to be a weighted set of
items that the user has visited. The weight can be based on the amount of time
the user spends on each item or other measures that represent the significance of
the items in the current browsing session. The algorithm DPA can be applied to
this weighted set to create an aggregate domain-level representation of the user
browsing history. We call this aggregate representation the current user model.
Given the current user model, there are two possible approaches to generating
personalized recommendations for the user. These two approaches are depicted
in Figure 9.

The first approach searches the domain ontologies to recommend the items
that have similar features with the current user model. We call the recommen-
dationed objects the instantiations of the current user model. This approach is
essentially a generalization of the keyword-based content filtering approach and
does not rely on any discovered usage profiles. While this approach does not
encounter the “New Item” problem, it does not have the advantages of collabo-
rative filtering systems, namely, considering item-to-item relationships that are
based on how items are used or accessed together rather than based on content
similarity. In addition, this approach requires the definition of possibly complex
similarity or distance functions for each of the attributes of the underlying classes
in the ontology.

Fig. 9. Personalization Framework utilizing Domain Knowledge

The second method generates recommendations based on the discovered
domain-level aggregate profiles. The recommendation engine matches the cur-
rent user model with all the discovered usage profiles. The usage profiles with
matching score greater than some pre-specified threshold are considered to rep-
resent this user’s potential interests. A successful match implies that the current
user shares common interests with the group of users this usage profile repre-
sents. The recommendation engine also matches the items in the domain with
the user’s potential interests and will recommend to the user the matching items.
This approach is more complex than the pure content-based approach in that
it involves two matching processes: matching the current user with the usage
profiles and matching the item candidates with the user’s potential interests.

The second approach has a number of advantages. First, it retains the user-
to-user relationships that can be captured by the discovered usage profiles. Sec-
ondly, in contrast to standard collaborative filtering, it provides more flexibility
in matching usage profiles with current user model because in this case match-
ing involves comparison of features and relationships, not exact item identities.
Furthermore, the items do not have to appear in any usage profiles in order to
be recommended, since fine-grained domain relationships are considered during
the instantiation process. The following example shows that this approach can
also be used to solve the “New Item” problem.

Let us consider the real estate Web site discussed in the previous section.
We again consider the real usage profile containing property 1, property 2, prop-
erty 3 and property 4 depicted in Figure 7. Suppose that there is a new item
property 5 (recently added to the site) which is not included in any usage pro-
files. Assume that property 5 has attributes 〈Price = {370000}, Location =
{Chicago}, size = {4500}, rooms = {4}, style = {2story}, Y earbuilt = {1993}〉.

Furthermore, assume that a user has browsed pages related to property 1 and
property 2. If the recommendation engine were based on item-level usage profiles,
property 5 would not be recommended. The recommendation engine would in-
stead recommend property 3, property 4. However, the current user model (prop-
erty 1 and property 2) is indeed more similar to property 5 than to property
3 or property 4 in terms of their domain-level attributes. If the recommenda-
tion engine uses domain-level aggregate profile of Figure 8, it would be able to
recommend property 5.

5 Conclusion and Future Work

In this paper we have presented a general framework for using domain ontologies
to automatically characterize usage profiles containing a set of structured Web
objects. Our motivation has been to use this framework in the context of Web
personalization, going beyond page- or item-level constrcuts, and using the full
semantic power of the underlying ontology.

In our approach we consider a Web site as a collection of objects belonging to
certain classes. Given a collection of similar user sessions (e.g., obtained through
clustering) each containing a set of objects, we have shown how to create an
aggregate representation of for the whole collection based on the attributes of
each object as defined in the domain ontology. This aggregate representation is
a set of pseudo objects each characterizing objects of different types commonly
occurring across the user sessions. We have also presented a framework for Web
personalization based on domain-level aggregate profiles.

Currently we assume that we have the predefined combination functions for
each class attribute specified as part of the domain ontology. One area of future
work involves the study of machine learning techniques in order to discover the
best way to summarize the attribute automatically. Another area of future work
involves the creation of general as well as domain-specific distance ro similarity
functions allowing for the comparison of objects in different classes with the
domain-level profiles. Finally another interesting area of work will be to explore
use of discoverd domain-level aggregates from Web usage mining to enrich the
existing domain ontology for a Web site.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. Proc.
20th Int. Conf. Very Large Data Bases, VLDB, 1994.

2. D. Brickley, and R.V. Guha, Resource Description Framework (RDF)
Schema Specification 1.0, World Wide Web Consortium, 2000.
http://www.w3.org/TR/rdf-schema/

3. B. Berendt and M. Spiliopoulou. Analysing navigation behaviour in web sites in-
tegrating multiple information systems. In VLDB Journal, Special Issue on Data-
bases and the Web. 9(1):56-75, 2000.

4. J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I. Horrocks.
Enabling knowledge representation on the web by extending RDF schema. In Pro-
ceedings of the 10th World Wide Web conference, Hong Kong, China, May 1–5,
2001.

5. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, S. Slat-
tery. Learning to construct knowledge bases from the world wide web. In Artificial
Intelligence, 118:69-113, 2000.

6. M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin.
Combining Content-based and Collaborative Filters in an Online Newspaper. In
Proceedings of the ACM SIGIR ’99 Workshop on Recommender Systems: Algo-
rithms and Evaluation. University of California, Berkeley, Aug. 1999.

7. R. Cooley, B. Mobasher and J. Srivastava. Data preparation for mining World
Wide Web browsing patterns. Journal of Knowledge and Information Systems, (1)
1, 1999.

8. M. Deshpande and G. Karypis. Selective markov models for predicting web-page
accesses. In First International SIAM Conference on Data Mining, 2001.

9. E. Damiani, B. Oliboni, E. Quintarelli, and L. Tanca. Modeling users’ navigation
history. In Workshop on Intelligent Techniques for Web Personalisation at the
17th International Joint Conference on Articial Intelligence (IJCAI01), Seattle,
Washington, (USA), 2001.

10. X. Fu, J. Budzik, and K. J. Hammond. Mining navigation history for recommenda-
tion. In Proc. 2000 International Conf. Intelligent User Interfaces, New Orleans,
LA, January 2000. ACM.

11. R. Giugno and T. Lukasiewicz. P-SHOQ(D): A Probabilistic Extension of
SHOQ(D) for Probabilistic Ontologies in the Semantic Web. Accepted for pub-
lication in Proceedings of the 8th European Conference on Logics in Artificial In-
telligence (JELIA’02), Cosenza, Italy, September 2002. Lecture Notes in Artificial
Intelligence, Springer, 2002.

12. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative filtering. In Proceedings of ACM SIGIR’99, 1999.

13. Ian Horrocks. DAML+OIL: a reason-able web ontology language. In Proc. of
EDBT 2002, March 2002. To appear.

14. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI-01), pages 199-204. Morgan Kaufmann, 2001.

15. B. Mobasher, R. Cooley and J. Srivastava. Automatic personalization based on
Web usage mining. In Communications of the ACM, (43) 8, August 2000.

16. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective Personalization Based on
Association Rule Discovery from Web Usage Data. In Proceedings of the 3rd ACM
Workshop on Web Information and Data Management (WIDM01), held in con-
junction with the International Conference on Information and Knowledge Man-
agement (CIKM 2001), Atlanta, Georgia, November 2001.

17. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Improving the effectiveness of
Collaborative Filtering on Anonymous Web Usage Data. In Proceedings of the IJ-
CAI 2001 Workshop on Intelligent Techniques for Web Personalization (ITWP01),
August 2001, Seattle.

18. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Discovery of Aggregate Usage Pro-
files for Web Personalization. In Proceedings of the Web Mining for E-Commerce
Workshop (WebKDD’2000), held in conjunction with the ACM-SIGKDD Confer-
ence on Knowledge Discovery in Databases (KDD’2000), August 2000, Boston.

19. B. Mobasher, H. Dai, T. Luo, Y. Sun, and J. Zhu. Combining web usage and con-
tent mining for more effective personalization. In Proceedings of the International
Conference on ECommerce and Web Technologies (ECWeb), 2000.

20. D. Mladenic. Text learning and related intelligent agents: a survey. IEEE Intelligent
Systems, 14(4):44–54, 1999.

21. M. Pazzani. A Framework for Collaborative, Content-Based and Demographic Fil-
tering. Artificial Intelligence Review, Dec. 1999, pp. 393-408.

22. Pitkow J. and Pirolli P. Mining Longest Repeating Subsequences to Predict WWW
Surfing. In Proceedings of the 1999 USENIX Annual Technical Conference, 1999.

23. R. Ramesh, L. V. Ramakrishnan. Nonlinear pattern matching in trees. In Journal
of the ACM, 39(2):295-316, 1992.

24. J. Srivastava, R. Cooley, M. Deshpande, P-T. Tan. Web usage mining: discovery
and applications of usage patterns from Web data. SIGKDD Explorations, (1) 2,
2000.

25. Myra Spiliopoulou and Lukas C. Faulstich. WUM: A Tool for Web Utilization
Analysis. In Proceedings of EDBT Workshop WebDB’98, Valencia, Spain, Mar.
1998.

