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Abstract. The Semantic Web is a vision of a machine readable Web
of resources, interlinked and connected through meta-data with common
ontologies. In this paper we explore the impact such a Semantic Web
would have on Machine Learning algorithms used for user profiling and
personalisation. Our hypothesis is that learning from the Semantic Web
should outperform traditional learning from today’s World Wide Web
for both performance and accuracy. In this paper we present results
obtained with two different datasets marked-up with semantic meta-
data; using these we have investigated different instance representations
and various learning techniques. Our initial results with the Naive Bayes
and K-NN algorithms were disappointing, leading us to examine the use
of the Progol algorithm. Using ILP techniques we were able to discover
meaningful and we believe, potentially reusable knowledge.
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1 Introduction

The Semantic Web [2]! is a vision in which today’s Web will be extended with
machine readable content, and where every resource will be marked-up using
machine readable meta-data. The intention is that documents on the Semantic
Web will convey real meaning by using structured data-formats and by referring
to common ontologies. We believe that initially the Semantic Web will consist of
hand-crafted pages much like the Web we know today, providing the same infor-
mation, but in machine readable form. For example, we could envisage semantic
markup accompanying a conventional HTML page giving information such as:
This is the web page of Gunnar Grimnes, he works for Aberdeen University, his
telephone number is 1224 630538 etc. We believe that such static information
demonstrates only part of the potential for Semantic Web technologies; their
deployment should allow for advanced profiling methods capable of acquiring
knowledge such as: Gunnar likes bands who recorded most of their material from
1968 to 1975, as well as any band who uses a Moog Synthesiser. When a true
Semantic Web exists in this form it becomes useful, and should, for instance,
allow for better matching of semantically enriched product descriptions with
semantic user profiles.

Machine learning technologies have been applied in the context of today’s World
Wide Web to help users find their way through the unmanageable amount of
information that exists. A typical scenario involves acquisition of a model of
a user’s interests which can then be used to make recommendations, e.g. this
link should be of interest or consider this product, it is similar to things you’ve
bought previously . A variety of approaches exist for learning from Web-content;
these range from methods which choose to ignore all HTML markup and treat
everything as plain text, to those which make use of the limited structure in
HTML and treat the title, heading, link-texts differently. Once content has been
extracted from documents, the next step is to apply information retrieval tech-
niques, such as stopword removal, stemming, term weighting and so on. A bag-
of-words representation is then used to form the training instances required by
the learning algorithm. Figure 1 provides a schematic view of this process.

In the work presented here we wish to explore the impact of the Semantic Web
on user profiling and personalisation; more specifically, we have investigated how
machine-learning techniques could be used if we had access to semantic markup
for every Web resource. Our hypothesis is that the Semantic Web should help
solve fundamental problems that make machine learning from the Web today
difficult, by providing structured information, reducing ambiguity, and providing
useful references to background information in the form of ontologies. We suggest
that learning from semantically marked-up data should outperform learning from
unstructured or semi-structured text, with regard to increased accuracy, i.e.
more meaningful and more usable results, as well as a decrease in the time and
resources needed to execute the learning algorithm.

! World Wide Web Consortium Semantic Web Initiative,
http://www.w3.org/2001/sw/
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Fig. 1. Learning from the Web — Schematic View

1.1 Methodology

The approach we have taken is based on a typical machine learning application
in the context of the World Wide Web: user-profiling. This scenario provides an
opportunity to explore the behaviour of a number of learning algorithms. We
assume that a user has interacted with a system on several occasions, perhaps
by rating a Web page or making a purchase at an e-commerce site. For our
purposes the exact scenario does not matter. FEach of these interactions form a
training instance, labelled with some class depending on the action performed
by the user. For example (s)he might have rated a book “Very good”, so the data
about that book then becomes the instance and its class would be “Very good”.
The challenge is to use a set of such instances to acquire a classification model
which can be used to predict class labels for future instances. For example, in
an e-business context, such a model could then be used to recommend products
to a user. To explore the impact of semantic markup, we require a number of
datasets of interactions which exist in a semi-structured text format, as well as in
a Semantic Web language, such as RDF2. We would then be able to compare the
performance of learning from the plain text format with learning from semantic
meta-data.

% http://www.w3.org/RDF/



In the next section, we describe the datasets we have used for our exper-
iments, then in section 3 we discuss our experiments with knowledge sparse
learning, the algorithms used, instance representations and results. In section
4 we discuss knowledge intensive learning, using the Inductive Logic Program-
ming algorithm Progol, again discussing algorithms, document representation
and results. Finally, we discuss some related work and present our conclusions.

2 Datasets

When commencing this work we knew that the Semantic Web was still very much
in its infancy, but we still hoped that it would be possible to find semantically
marked-up data upon which to base our experiments. Unfortunately, we have
been unable to find any substantial amount of data containing such markup?®.
For this reason we were forced to generate our own (perhaps rather artificial)
data. It is our hope, however, that this data will serve to illustrate the issues
associated with learning from the Semantic Web.

2.1 The ITTalks Dataset

ITTalks* is an online portal for information about information technology sem-
inars given at universities in the US. It was the only application of a Semantic
Markup language we were able to find which had sufficient amounts of such data
publicly available. Tt uses DAML+OIL? to describe talks, talkers, location and
other concepts relating to seminars. The system is public and anyone is free to
submit their own talk. The talks come in several formats, either as a plain HTML
Web page or as DAML+OIL. Figure 2 shows an example of both formats.
Although these documents are generated from the same back-end database,
there are some differences in content, e.g. the HTML version includes a biography
of the author, while the DAML+OIL variant includes more information on time
and place, etc. The ITTalks set contained descriptions of 64 talks, each of which
formed an instance in our dataset. The 64 instances were manually classified by
each of us (PE, GAG, ADP) into two classes, either interesting or not interesting
based on the title, author and abstract. Three classified variants of the raw data
were thus created. Figure 5 summarises the class distributions of each version.

2.2 The Citeseer Dataset

The NEC ResearchIndex® is a digital library of research papers within Com-
puting Science. It does not provide documents with semantic markup, but the
lack of any other sources of data with appropriate markup (other than ITTalks)
forced us to look for different ways of acquiring such data. The ResearchIndex

3 We would be delighted if anyone could point us at such a datasource!
* http://www.ittalks.org

® http://www.daml.org

5 http://citeseer.nj.nec.com/cs



<html> -

<head>
<title=IT Talks V2.8</title>
</head>

<tr align="center">
<td colspan="2" class="defaultTitle"><br>
On forward error correction codes and line-coding
schemes in optical fiber communications
<ftd></tr>
<tr align="center">
<td colspan="2" class="defaultSubTitle"><br>
Yi Cai<br>
UMBC<br><br>
<ftd></tr>

<tr align="center">
<td colspan="2" class="default"><br>
UMBC, TRC, 107 <br />
1:00pm - 3:00pm,
Wednesday, May 2, 2001
<Mtd></tr>

<tr valign="top" align="left">
<td class="default" colspan="2">
Jin-Yi Cai obtained his Ph. D, in 1986 from Cornell
University. After faculty positions at Yale ...
<td></tr>

< Talk rdf: parseType="Resource">

i
<Title>On forward error correction codes and line-coding schemes
in optical fiber communications</Title>

_.<BaglnTime>
<time:Year>2001</time:Year><time:Month>05</time:Month>
<time:Day>02</time:Day><time:Hour>1 3</time:Hour>

</BeginTime>

<EndTime>
<time:Year>2001</time:Year><time:Month>05</time:Month>
<time:Day>02</time:Day><time:Hour>15</time:Hour>

</EndTime>

<Location rdf:parseType="Resource">
<Institution>UMBC</Institution>
<Building>TRC</Building>
<Room>107</Room>
<Street1>1000 hilltop circle</Street1>
<City>Baltimore</City>

</Location>

‘__'ETopIc>ACMTopiciDataiCGding\_And\_I nformation\_Theory</Topic>

Fig.2. HTML and DAML+OIL Examples from ITTalks.



provides the full text of the papers, and an indexing system for citations; in
addition, it provides the corresponding BibTex entries, see Figure 3.

Q@inproceedings{ zucker92performance,

author = "R. Zucker and J.-L. Baer",
title = "A Performance Study of Memory Consistency Models",
booktitle = "Proceedings of the 19th International Symposium on Computer Architecture",

address = "Gold Coast, Australia",
year = "1992",
url = "citeseer.nj.nec.com/zucker92performance.html" }

Fig. 3. Example BibTex Entry from NEC ResearchIndex.

BibTex is a highly structured format, and is therefore easily converted to
an XML based format, such as RDF. We chose RDF, as it is the W3C’s basic
Semantic Web representation language. The conversion to RDF was performed
by making the identifier of the paper (i.e. zucker92performance) the subject
and each attribute-value line a predicate and object in an RDF triple. Figure 4
illustrates the RDF generated from the BibTex appearing in Figure 3.

<?xml version="1.0"?7>
<rdf :RDF
xmlns="http://www.csd.abdn.ac.uk/ ggrimnes/exp/\#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns\#">
<inproceedings rdf:about="zucker92performance">
<author>R. Zucker and J.-L. Baer</author>
<title>A Performance Study of Memory Consistency Models</title>
<booktitle>Proceedings of the 19th International Symposium on Computer Architecture</booktitle>
<address>Gold Coast, Australia</address>
<year>1992</year>
<url>citeseer.nj.nec.com/zucker92performance.html</url>
</inproceedings>
</rdf :RDF>

Fig. 4. RDF Example Generated from BibTex.

The meta-data generated from BibTex is very simple, and lacks many of
the properties of a real Semantic Web resource, such as ontology references. One
notable characteristic is that it is much shorter than the plain text representation
of the same instance (typically ~5000 words). In addition, the BibTex does
include some information that is not to be found in the full text, such as journal
title and year of publication.

The ResearchIndex provides a Computer Science Directory” listing the most
cited papers in each of 17 subject categories. In these categories ResearchIndex
lists 5066 papers. However, a number of these appear under more than one cat-
egory and were removed, to leave 4220 instances in our dataset. One approach

7 http://citeseer.nj.nec.com /directory.html



to learning from this data would be to attempt to learn a classifier capable of
discriminating between the 17 categories. However, as a multi-class problem is
substantially harder than a simple binary like/dislike classification, we also ran
the experiment attempting a binary classification over each of the 17 categories,
i.e. is this paper an Agents paper, or is it any of the other 16 classes? We chose
the five categories with the most instances for binary classification, namely Ma-
chine Learning, Artificial Intelligence, Information Retrieval, Human Computer
Interaction and Databases. We also selected the Agents as one of the smaller
groups. Figure 6 presents the class distribution for this dataset. Note that the
GAG variant has 10 more instances as more talks became available from I'TTalks,
however these were never classified by PE or ADP.

Instances|Likes |Dislikes
GAG 64 25 39
PE 53 16 37
ADP 53 15 38

Fig. 5. ITTalks Dataset Profile.

Dataset ML| AI| IR|HCI|DB|Agents
Number of Instances 4220| 385(367|337| 284|285 218

Fig. 6. ResearchIndex Dataset Profile.

3 Knowledge Sparse Learning

3.1 Introduction

We define Knowledge Sparse Learning as the approach that is traditionally taken
by statistical or probabilistic machine learning methods. In the Web context, the
presence or absence of certain discriminating keywords within a set of training
instances is used to produce a classification model. Such a model is then used
to predict the class of future unseen instances. Such a model typically consists
of a set of weights or a probabilistic model for terms occurring within each
class. A model learned from such an approach is mainly useful within the given
experiment, and will be useless for classifying instances from a different subject
domain, where the discriminating keywords might be different, or even instances
from the same domain which have been preprocessed in a different way.



3.2 Algorithms

For this part of our study, we used two well known machine learning algorithms,
both of which operate using a feature vector representation of each instance. The
features used to describe instances varied between our different approaches (see
below). N-fold cross validation [21] was used when assessing the performance of
the methods. The algorithms will now be discussed briefly.

Naive Bayes [11] is a simplified version of the Bayes classifier, which takes a
probabilistic approach to learning. Naive Bayes reduces the complexity of the
normal Bayes classifier by making the assumption that the features of an instance
are conditionally independent. In practice, this assumption seldom holds true,
but the algorithm still performs well on many real-world classification tasks,
having been shown to be equal in accuracy to neural networks and decision tree
learning [10].

K-Nearest Neighbour (KNN) [4] is an algorithm which will label unknown in-
stances with the label of the majority of the K nearest neighbours in N-dimensional
space, where N is the number of features used for describing each instance. KNN
is a lazy algorithm, meaning that it will not generate a model based on the train-
ing instances, but only when asked to classify a new instance will it perform the
computations needed to classify the given instance. The version of KNN used
in our experiments is a variation of the standard algorithm, able to deal with
symbolic inputs [3].

3.3 Instance Representations

We have investigated three different ways of representing instances in this study:
one based on the text content of our documents, and two which make use (in some
way) of the semantic meta-data. We will now describe each of these approaches.

1. Plain Text As a baseline approach we used a simple method to create train-
ing data [7,1]. This was based upon the HTML version of the ITTalks data
and the full text of the ResearchIndex articles. For each instance we removed
all numbers and all words of length less than 3, before applying a stopword list
which removes non-content words such as it, the, their, etc. We also explored
application of a stemming algorithm [18], reducing words like computer, comput-
ing, computers to comput. The idea was to make generalising over classes easier,
but we found stemming to make little or no difference in performance, and chose
not to use it. Once this initial pre-processing had been completed, we had the
option of either creating a binary vector with each element corresponding to a
term in the document vocabulary, or some form of weighted vector (based on a
subset of available terms). Due to the size of the vocabulary (150,000 terms for
the ResearchIndex dataset) we decided to adopt the latter approach.

TF/IDF weights [6] were calculated for each of the terms and the 1500 with
the highest TF/IDF ranking were selected. The presence or absence of each of



these terms was then used to create a binary term vector. Figure 7 shows an
example of the processing stages involved and the final representation.

Original HTML document:

<html>

<head><title>Machine Learning from the Semantic Web</title></head>

<body>

<hi>Machine Learning from the Semantic Web</h1>

<i>By Gunnar AAstrand Grimnes</i>

<p>In this seminar we give details on our recent experiments on learning from the semantic web

4

Removal of HTML markup, stopwords and numbers:

machine learning semantic web machine learning semantic web gunnar aastrand grimnes seminar
give details recent experiments learning semantic web ...

i

Selection of most discriminating terms using TF/IDF:
learning, semantic, ontology, agent, talk, experiments, url ...

Binary term vector for this instance:
1,1, 0,0, 0, 1,0 ...

Fig. 7. Instance Representation — Method 1.

2. Treating RDF Tags as Plain Text Our next approach was similar to
the first, but instead of employing a plain text representation for each instance
we make use of the marked-up data. This data was preprocessed in essen-
tially the same manner as the plain text, with one important difference. In
HTML documents the tags provide formatting information, i.e. <b> tells us
that this text should be printed in bold, while in the meta-data files the dif-
ferent XML/RDF tags represent some information about the meaning of the
content, i.e. <location> tells us that a talk has a location. We did not want to
ignore this information, so in this approach we treat the XML-tags as additional
text content. As we use TF/IDF to select highly ranked terms to appear in the
instance representation, commonly occurring tags will of of course be ignored.
However, tags which occur infrequently will still find their way into the instance.
Figure 8 shows an example of this instance representation.

3. Using RDF with Tag = Feature Mapping Our third approach was
based on the observation that on the Semantic Web, markup provides structure,
so instead of throwing away this structure by treating all the text as one unit we
processed the content of each tag separately. Each element in our instance vector
then became the set of words which occurred within a certain tag; the content



Original RDF document:

<xml>
<rdf>
<talk id=’mlsemwebl’>

<title>Machine Learning from the Semantic Web</title>

<speaker>
<name>Gunnar AAstrand Grimnes</name>
<url>http://www.csd.abdn.ac.uk/"ggrimnes</url>
<faxnumber>+44 1224 273422</faxnumber>

</speaker>

Removal of stopwords and numbers:
zml rdf talk title machine learning semantic web speaker name gunnar aastrand grimnes name
url csd abdn ggrimmnes url faznumber speaker ...

Y

Selection of most discriminating terms using TF/IDF:
learning, semantic, ontology, faxnumber, agent, experiment ...

Binary term vector for this instance:
1,1,0,1, 0,0, ...

Fig. 8. Instance Representation — Method 2. (Note difference from term vector in
Figure 7)

of this tag was pre-processed in the same manner as for methods 1 and 2, i.e.
applying a stopword list, ignoring short words, etc. The length of the instance
vector then became the number of unique tags in the documents, not the number
of unique words. This approach is possible because the variants of both Naive
Bayes and K-Nearest Neighbour we used supported sets of values as elements in
the instance vectors.

While this approach made sense for most tags, some tags had a clearly de-
fined internal structure where information would be lost if pre-processed. An
example is the ACMTopic field of the ITTalks dataset, which gives the topic
of the talk as a string such as ACM Topic/Computer_Systems_Organization/-
Computer_Communication_Networks/Internetworking. If preprocessed normally
this would be broken up into separate terms and the accurate meaning lost,
so we did not preprocess this tag. Figure 9 shows an example of this instance
representation.

3.4 Results

The ITTalks results are shown in Figures 10 and 11. From these results, it is
immediately noticeable that the GAG variant of the classified ITTalks data led
to poor results. We believe that this is an artifact due to the manual classification
of the data; the GAG variant reflects a less clearly defined interest profile than



Original RDF document:

<xml>
<rdf>
<talk id=’mlsemwebl’>
<title>Machine Learning from the Semantic Web</title>

<speaker>
<name>Gunnar AAstrand Grimnes</name>
<url>http://www.csd.abdn.ac.uk/"ggrimnes</url>

</speaker>

U

Removal of stopwords, numbers, etc. from tag content:

<xml>
<rdf>
<talk>

<title>machine learning semantic web</title>

<speaker>
<name>gunnar aastrand grimnes</name>
<url>csd abdn ggrimnes</url>

</speaker>

Using the following tags as features:

talk, title, speaker, name, url ...

Instance:

{}, { machine, learning, semantic, web }, {}, {gunnar, aastrand, grimnes}, {csd, abdn, ggrimnes}

Fig. 9. Instance Representation — Method 3.

GAG PE| ADP |Average
1. Plain Text 48.27%69.38%165.30%| 60.98%
2. RDF Tags as text 50.00%65.30%|67.34%| 60.88%
3. RDF Tags as Features|34.48%|40.81%|40.81%| 38.70%

Fig. 10. Results for Naive Bayes - ITTalks Dataset.

GAG PE| ADP|Average
Method 1: Plain Text 55.17%|73.47%65.31%| 64.65%
Method 2: RDF Tags as Text 56.90%|69.39%59.18%| 61.82%
Method 3: RDF Tags as Features|50.00%|65.31%|57.14%| 57.48%

Fig. 11. Results for K-Nearest Neighbour - ITTalks Dataset.

10



Multi Class| ML Al IR| HCI DB|Agents
Method 1: Plain Tex 43.38%83.84%70.02%|77.35%|78.69%|85.02%| 78.93%
Method 2: RDF Tags as Text 47.53%(91.71%89.76%|91.06%|93.67%|94.43%| 95.23%
Method 3: RDF Tags as Features 51.13%|89.62%|88.05%90.33%91.51%|91.85%| 92.82%

Fig. 12. Results for Naive Bayes - ResearchIndex Dataset.

Multi Class| ML Al IR| HCI| DB|Agents
Method 1: Plain Text 46.52%193.39%191.26%|94.00%|93.96%|95.47%| 96.40%
Method 2: RDF Tags as Text 26.47%|91.73%90.73%192.39%93.41%|94.00%| 94.95%
Method 3. RDF Tags as Features 24.19%)89.83%89.69%90.21%93.10%92.65%| 98.58%

Fig. 13. Results for K-Nearest Neighbour - ResearchIndex Dataset.

the two other variants, both of which were created by academics researchers
with specific interests. Another phenomenon we can observe from the results is
the poor performance of Method 3 (mapping RDF tags to features). We believe
this is caused by the large number of distinct tags which appear in the ITTalks
meta-data, and the fact that the majority of the textual content is contained
within very few tags, such as Abstract, Bio-Sketch and Title. This would cause
the instance representation for Method 3 to have very sparse vectors with a
few features containing large numbers of terms; there are thus many redundant
features which do not provide any information that can be used for creating
the model. Method 2 is not affected by this as the entire document is treated
as one unit of text for instance generation purposes. Finally, we observe that
Method 1 and Method 2 lead to very similar results. We believe that this is
caused by another artifact of the dataset. All of the instances in the dataset
contain the same set of DAML+OIL tags, even if these might be empty for
certain instances. As we use TF/IDF to select highly ranked terms for inclusion
in the instance vector, and tag names appear in all examples, they will never
get into the final instance representation. Thus, the plain text and meta-data
versions of this dataset are essentially the same. We would anticipate that in
a true Semantic Web dataset, the meta-data would be richer in nature and its
presence would provide more information than the pure text instances.

The ResearchIndex results can be found in Figure 12 and 13. The first column
gives results for the multi-category problem, and as expected, they are poor.
K-Nearest neighbour performs much worse than Naive Bayes at the multi-class
classification, we believe this is caused by K-nearest neighbour being very sus-
ceptible to the inclusion of irrelevant or redundant attributes, as the distance
metric combine measurements for all of the features [16].
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4 Knowledge Intensive Learning

4.1 Introduction

On the Semantic Web content is represented via a logical language in which
meaning is clearly defined. In our first group of experiments, while some use was
made of the structure provided by markup, its logical nature was ignored. By
exploiting the full potential of the Semantic Web we argue that it should be
possible to learn rules and statements in a logical representation that is similar
to that used for the content.

4.2 Inductive Logic Programming

We have chosen to use the Progol Inductive Logic Programming (ILP) system.
Progol has been defined as “A standard Prolog interpreter with inductive ca-
pabilities” [15]. It is able to learn knowledge (expressed as Prolog predicates)
from supplied example instances and supporting background information. The
algorithm has been successfully used in experiments for analysis of mutagenic
activity amongst nitroaromatic molecules [20], drug design [5] and protein shape
prediction [14]. The theory behind ILP and the original Progol algorithm is
described in [13]. For our experiments we used CProgol4.4.8

4.3 Methodology

We explored the application of Progol in the context of the NEC ResearchIndex
Dataset, as it is the larger of our datasets and maps easily to a Prolog represen-
tation. The ITTalks dataset has a much richer set of meta-data which is more
difficult to represent in Prolog. In our RDF—Prolog mapping, we have used
the simple RDF data model of {subject, predicate, object} triples; the ITTalks
dataset is encoded using DAML+OIL, which, when treated as plain RDF, gen-
erates many complex reification triples which would shroud the meaning of the
documents, compared to the intuitive meaning of the simpler triples from the
ResearchIndex, such as the author of this article is Gunnar Grimnes.

Progol was run on a randomly selected subset of 1000 of the total 4220 papers
from the ResearchIndex, as running experiments with the full dataset would
have taken too long, as we were continuously tweaking learning parameters and
instance representations. As before, we ran binary experiments over the different
classes, but with Progol we attempted to learn a classification for each of the
17 classes. We used a single Prolog predicate of the form inClass( +article ) to
represent class membership. This became the target clause which Progol would
try to learn.

8 Progol is freely available online from http://www.doc.ic.ac.uk/~shm/Software/.
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4.4 RDF as 1st Order Logic

Initially we chose a very simple approach to map RDF to Prolog. As the RDF
data-model represents (subject, predicate, object) triples, we employed a single
Prolog predicate called triple. Figure 14 illustrates our initial representation and
corresponds to the RDF appearing in Figure 4. Note how the BibTex type maps
to a RDF concept within the namespace of these experiments.

triple( url, zucker92performance,
’citeseer.nj.nec.com/zuckerQQperformance.html’ )

triple( booktitle, zucker92performance, ’Proceedings of the 19th
International Symposium on Computer Architecture’ ).

triple( type, zucker92performance,
*http://www.csd.abdn.ac.uk/“ggrimnes/exp/#inproceedings’ ).

triple( address, zucker92performance, ’Gold Coast, Australia’ ).

triple( title, zucker92performance, ’A Performance Study of
Memory Consistency Models’ ).

triple( year, zucker92performance, ’1992° ).

triple( author, zucker92performance, ’R. Zucker and J.-L. Baer’ ).

Fig. 14. RDF Encoding — Initial Approach.

Perhaps as expected, this approach did not give very good results as the
search space for Progol became extremely large. Due to Progol only having one
predicate to use in the construction of the result clause, the algorithm would
quickly get lost down a faulty path of the search-tree with incorrect constants
or incorrect unifications, and never recover.

Our first improvement was to change the way we represented triples. In-
stead of casting them all to the same predicate, we created a Prolog predicate
corresponding to each RDF predicate, e.g. triple( author, zucker92performance,
’J. Zucker’) became author( zucker92performance, ’J. Zucker’ ). Secondly, we
recognised that Progol operates on strings and if two literals are not exactly
equal, Progol has no way of generalising over them. This led us to preprocess
all strings so that each word became a separate Prolog fact. For example, in-
stead of title( learning02grimnes, ’Learning from the Semantic Web’ ) we would
have: title( learning02grimnes, ‘learning’ ), title( learning02grimnes, ’semantic’
) and title( learning02grimnes, "web’ ) . In addition to this simple pre-processing
we also applied a list of synonyms for commonly used abbreviations and mis-
spellings, e.g. proc, procs and proceeding all map to proceedings, sizth maps to
6th, etc. Finally, we standardised the representation of author names to first
initial plus surname, as BibTex does not specify a standard. This means that
Alun Preece, Preece A. and Alun D. Preece all map to A. Preece. As with title
words we would created one Prolog fact for each author. An example of our final
representation appears in Figure 15.
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url( zucker92performance, ’citeseer.nj.nec.com/zucker92performance.html’ ).
booktitleword( zucker92performance, ’proceedings’ ).

booktitleword( zucker92performance, ’19th’ ).

booktitleword( zucker92performance, ’international’ ).

booktitleword( zucker92performance, ’symposium’ ).

booktitleword( zucker92performance, ’computer’ ).

booktitleword( zucker92performance, ’architecture’ ).

type ( zucker92performance, ’http://www.csd.abdn.ac.uk/"ggrimnes/exp/#inproceedings’ ).
address( zucker92performance, ’Gold Coast, Australia’ ).

titleword( zucker92performance, ’performance’ ).

titleword( zucker92performance, ’study’ ).

titleword( zucker92performance, ’memory’ ).

titleword( zucker92performance, ’consistency’ ).

titleword( zucker92performance, ’models’ ).

year ( zucker92performance, 21992’ ).

author( zucker92performance, ’R. Zucker’ ).

author( zucker92performance, ’J. Baer’ ).

Fig. 15. RDF Encoding — Second Approach.

4.5 Results

Lack of space prevents us from presenting the Progol results in full. However, we
will discuss some features of the results and will provide illustrative examples.
For most classes the majority of the rules discovered by Progol are of the form:
inClass( zucker92performance ), meaning that Progol was unable to find any
common features between instances of the given class, and simply returned an
inClass clause that lists all the instances declared to be in that class. This prob-
lem is almost certainly caused by the small number of features used to describe
each instance, and overlap between some of the classes, making it difficult for
the algorithm to identify discriminatory generalisations.

Despite this problem, some rules were discovered that covered more than
a single instance. For example, Figure 16 shows the rules generated from the
Agents class; the first five rules are straightforward, and encapsulate obvious facts
about publications in the area of agents technologies. However, the sixth rule,
inClass(A) :- titleword(A,bdi)., is more interesting. BDI is an abbreviation for
beliefs, desires and intentions, a common paradigm within agents research [19].
An active researcher in the agents field would find this almost as obvious as the
other rules, based on their knowledge and experience of the field. This Progol
result is thus a piece of general knowledge, which is not only usable in trying to
classify new research papers from the ResearchIndex, but could also potentially
be applied outside this experiment. Several of the other classifications also gen-
erated rules of a similar type. We find these results from our Progol experiments
very exciting, and present a selection in Figure 17. The rules range from the
slightly bizarre, such as all papers published in volume 18 are Theory, to rules
containing interesting and potentially reusable knowledge, such as Papers pub-
lished by Morgan Kaufmann appearing in books with learning in the title are in
the field of Machine Learning.

Examination of the Progol results indicate that Progol is overfitting to the
problem, by creating a large number of inClass rules. This is because it is im-
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Agents:

inClass(A) :- author(A,’A. Rao’).

inClass(A) :- author(A,’D. Lambrinos’).

inClass(A) :- titleword(A,agent), titleword(A,mobile).

inClass(A) :- type(A,’http://www.csd.abdn.ac.uk/"ggrimnes/exp/#misc’),
textword(A,agent), titleword(A,agent).

inClass(A) :- year(A,1999), titleword(A,agents).

inClass(A) :- titleword(A,bdi).

Fig. 16. Excerpt of Progol Results - Agents Experiment

Artificial Intelligence:

inClass(A) :- journal(A,’SIAM Journal on Control and Optimization’).
inClass(A) :- journal(A,’Computational Linguistics’).

Databases:

inClass(A) :- titleword(A,warehousing).

inClass(A) :- titleword(A,deductive).

inClass(A) :- titleword(A,aggregate).

inClass(A) :- titleword(A,transactions).

Machine Learning:

inClass(A) :- publisher(A,’Morgan Kaufmann’), booktitleword(A,
learning) .

inClass(A) :- titleword(A,based), titleword(A,case).

Programming:
inClass(A) :- pages(A,225), booktitleword(A,conference).

Security:

inClass(A) :- booktitleword(A,privacy).
inClass(A) :- titleword(A,watermarking).
inClass(A) :- titleword(A,encryption).
Theory:

inClass(A) :- volume(A,18).

Fig. 17. Progol Results - Sample Rules

ML Al IR| HCI| DB|Agents
Recall:(62.50%|58.93%26.92%|45.31%|37.50%| 58.93%

Fig. 18. Recall for Pruned Progol Rules - ResearchIndex Dataset.

15



possible for Progol to generalise any further without creating rules that are not
correct for 100% of all the instances. It would be desirable to allow rules that
would correctly classify, say, 99% of the instances, thus allowing more generali-
sations and pruning the set of resulting rules. By doing this we would hopefully
get a smaller set of rules for each class, and a much smaller set of inClass state-
ments. However, as Progol has no built in method for doing this, we chose to
take a very simple approach as follows: all the inClass rules were discarded and
only the more knowledge-rich rules retained for each class. When this reduced
set is used for classification, the precision of the rules is still 100% as no articles
will ever be incorrectly classified, however recall will no longer be perfect. The
percentage of recalled instances for each class are presented in Figure 18.

5 Related Work

We are aware of little work concerned with application of machine learning to
Semantic Web data. This is in contrast to applications to the Web, of which
there have been many. For example, Syskill & Webert [17] uses machine learn-
ing to acquire a model able to predict which links on a Web page a user will
find useful. It does this by analysing a set of Web pages manually rated by
a user, which are then processed using structural IR techniques. Syskill & We-
bert uses a Naive Bayes classifier, but the authors also report investigations using
nearest neighbour algorithms, ID3, perceptrons and multi-layer neural networks.
Webwatcher [1,12], like Syskill & Webert, is a browsing aid which attempts to
annotate a Web page with information on what links a user might find useful.
The authors explored a variety of learning algorithms, such as Winnow [9] and
Wordstat. Underlying the system was an instance representation which did at-
tempt to exploit more of the structure of the HTML documents, as link text,
headers, etc. were treated differently. Letizia [8] is a browser helper, displayed
in a separate window next to the user’s browser. It pre-fetches all outgoing links
from the current page and will do a breadth first search to advise the user on
which links to visit next. Letizia uses TF/IDF to extract content from pages,
and uses the weighted terms to identify documents matching the user’s interest.

6 Conclusions

Our results have demonstrated that today’s available Semantic Web markup
cannot be expected to outperform conventional machine learning applied to plain
text, with regards to accuracy of the learned model. However, it must be noted
that applying the same algorithm to the full text of an article of 6000 words,
and to 10 lines of RDF code, while still getting equally good predictive accuracy
does constitute an increase in performance and scalability. In the Web context
this is especially important as algorithms will be expected to scale to millions of
pages. Nevertheless, we remain somewhat unsatisfied with our current results for
anumber of reasons. Although we attempted to find real Semantic meta-data, we
admit that we are not completely happy with our datasets. The ITTalks dataset
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is too small to be able to draw any firm conclusion from any results, and the
ResearchIndex dataset has generated meta-data from a source which was never
meant to provide real meaning. Also, when the Semantic Web becomes reality,
many supporting technologies should be available, most significantly ontological
support and the availability of inference engines, which should allow for easy
generalisations of the kind: A *, Simulated Annealing and Depth-first are all types
of Search algorithms which could be used to facilitate classification tasks such
as the ones we have attempted in this paper, but which are nearly impossible to
discover without any background information.

6.1 Future Work

We plan to continue exploring issues concerned with Progol and Knowledge
Intensive Learning on the Semantic Web, primarily attempting to utilise back-
ground information to help Progol generalise better over classes. We plan to
explore generation of such background information from ontologies referenced
in the meta-data, as well as through the use of general background information
such as as synonyms or word similarity.’.

We are very interested in trying to apply the resulting Prolog clauses outside
the original experiment. As the results are first order logic it should be possible
to map them back to a representation in RDF or a similar logic based format,
thus exporting the model that was learned.

Due to the current shortcomings of Semantic Web data we plan to do further
experiments with our current datasets. Primarily we intend to re-classify the
ResearchIndex papers based on personal interest, thus moving further towards
the personalisation and learning user models scenarios used as motivation for
this work. We would also like to run Progol with the full ResearchIndex dataset,
not just a small subset of the instances, as well as attempting to find a good
way of mapping DAML+OIL to Prolog, so that we may run Progol experiments
with the ITTalks dataset.
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