
RDF Visualization using a Three-Dimensional
Adjacency Matrix

Mario Arias Gallego
Computer Science Dept.
Univ. of Valladolid, Spain

mario.arias@gmail.com

Javier D. Fernández
Computer Science Dept.
Univ. of Valladolid, Spain
jfergar@infor.uva.es

Miguel A. Martínez-Prieto
Computer Science Dept.

Univ. of Valladolid, Spain &
Univ. of Chile, Chile

migumar2@infor.uva.es
Pablo de la Fuente
Compt Science Dept

Univ. of Valladolid, Spain
pfuente@infor.uva.es

ABSTRACT
Previous RDF visualization tools generally use node-link
representations of the RDF graph to visualize its informa-
tion. This approach may be enough for small data sets, but
it becomes unmanageable as the number of triples increases.
Despite advanced node-merging and layout algorithms exist,
their outcome do not provide a clear view of the overall RDF
structure. In this paper we propose using a 3D adjacency
matrix as an alternate visualization method for RDF. We
first accurately describe how to graphically organize and an-
notate the triples. Then, we provide some insights on how
to interpret the visualization method by analyzing a real-
world RDF data set. Finally, we describe some of the most
common patterns found in RDF data.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Human Factors, Design

Keywords
RDF Visualization, adjacency matrix, RDF analysis

1. INTRODUCTION
The RDF1 W3C Recommendation, provides a simple declar-

ative data model of statements (subject, predicate, object)
to describe resources. A set of these triples can be seen as a
graph of knowledge, where different resources are described

1
http://www.w3.org/TR/REC-rdf-syntax/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEMSEARCH2011 Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

using properties and linked together. RDF itself is schema-
relaxed, the vocabulary evolves as needed on demand and it
is described in RDF itself. This allows interconnecting het-
erogeneous sources of data but makes the structure complex
due to its fine grain.

Despite the fact that RDF was originally devised for the
Semantic Web, an increasingly number of RDF data sets
are being published from diverse areas of application such as
bioinformatics, social networks, geographic locations, books
or films. The Linked Data Project2 has emerged as an initia-
tive to promote the use of RDF to publish structured data
on the Web in a distributed and interconnected manner [1].
Latest Linked Open Data (LOD) cloud estimations3 show
that more than 25 billion RDF triples are being shared and
increasingly interconnected (close to 1 billion links).

RDF data tend to be large, complex, and hard to read in
its textual format. Hence, semantic information developers
need visual tools to help them understand its content. Some
of the typical tasks are identifying which are the most rel-
evant resources in the graph, which are the most common
literals, whether the information is grouped or scattered,
count the number of elements of each type, or see the links
between resources. Finding an adequate way of visualizing
this data is an excelent tool for the developers to know in a
straightforward manner how the information is distributed
within the data set.

Previous works usually generate a node-link graph to rep-
resent the associated RDF graph on screen. While this ap-
proach is valid for small data sets, the result is too confusing
for large data sets containing millions of triples, and conse-
quently tons of nodes and relationships. A solution to this
problem is focusing on a subgraph composed by all nodes
within a constant graph-traverse range respect to a center
node. This way, the visualization provides more detail of
the specified subgraph, but disregards the remaining infor-
mation and therefore loses the overall view of the data.

We propose using a 3D adjacency matrix as an alternate
visualization method for RDF data sets. This approach com-
plements previous works providing a different view of the in-
formation, which overlooks fine-grain details to concentrate
on the lattice itself. We think that this visualization method

2
http://linkeddata.org

3
http://www4.wiwiss.fu-berlin.de/lodcloud/



shall be useful to semantic data developers, RDF store and
search engine designers to understand the peculiarities of
the different data sets.

In section 2, we review the state of the art in RDF vi-
sualization. Then, we thoroughly describe our visualization
method in section 3. Next, in section 4 we proceed to use
our tool to analyze a real-world data set as an example,
providing some insights on how to interpret the visualized
information and which are the most common patterns found
in RDF data. Finally, section 5 summarizes our conclusions
and future work.

2. PREVIOUS WORKS
RDF is not meant to be read by humans but by com-

puters. However, it is important that those who generate
or consume information in this format can also browse and
understand it. Several authors have addressed this problem
and have proposed solutions to visualize RDF data, provid-
ing valuable tools to simplify this task to the user.

One of the most common ways of facing RDF visualiza-
tion is considering RDF as a big graph, and then use tra-
ditional large-graph node-link visualization techniques, like
those used on Web graphs, social networks, or DNA microar-
rays. The biggest issue of this approach is scalability due to
the vast size of the data. Since RDF data sets contain thou-
sands to millions of statements connecting tons of resources,
there is a huge number of graph nodes, edges, and a nu-
merous amount of high-degree nodes [2, 3]. As the number
of nodes increases, the readability issue becomes even more
noticeable. Due to the big amount of information, the users
begin to have trouble identifying the single elements and the
visualization looks like an unrecognizable smudge.

There are several proposals to alleviate the readability
problem on big node-link graph visualizations. Their main
purpose is reducing the amount of shown information to
only present one facet, easily understandable by the users.
For instance, node-merging techniques join similar or related
nodes into clusters that will appear as a single element in
the visualized graph, therefore hiding the complexity of its
internals [4]. The cluster node might also contain a summary
of its contents. For example, in a RDF database of people,
we could gather every triple referring to the same individual
into a single node, label it with the URI, and include a list
of the properties of that specific person, like the full name,
Web page and email address.

Another possibility is allowing users to disclose the details
of a cluster by using the expand operation or merge several
nodes into a cluster using the contract primitive. This way
we can construct a hierachically structured graph and let the
user browse it by selecting which cluster she is interested in.
Afterwards, we can show another view which summarizes
the nodes the user have traversed, using an method called
triangle-layout or incremental exploration. The user starts
from an initial center node, and the system constructs a
tree which includes all graph edges when the user traverses
them for the first time, generating a so-called navigation
tree. Then a traditional triangle-layout algorithm can be
used to render the tree [4].

Despite RDF can be seen as a big graph, and this rep-
resentation is advantageous to perform many tasks, some
authors [8] highlight that the graph representation is not
convenient to perform every single activity regarding RDF,
namely visualization. They argue that although graph visu-

alization might seem the natural extension when the data is
already in graph format, we must take into account which
is the task being pursued, which is the question being an-
swered, and which are the most interesting aspects of the
information in that specific case. For instance, we shall
not use the same visualization technique to analyze con-
text/densities than to calculate paths or identify hub nodes.

A completely different approach of rendering graph data
is using its adjacency matrix. It consists of generating a
boolean-valued connectivity table where rows and columns
represent the vertices of the graph, and each cell (x,y) states
whether x is connected to y or not. Then we render the
table coloring each entry using two different colors for each
boolean value.

Previous authors [5] compare traditional node-link against
adjacency matrix visualization techniques. The advantage
of node-link is that people is more familiar to this kind of
representation, consequently, they understand them easily.
Its biggest drawback is the problem of node overlapping and
edge crossing that result in complex structures that are not
easily identifiable. However, this problem has been fairly
studied and advanced layout and clustering algorithms exist.
On the contrary, adjacency matrix techniques do not man-
ifest the node overlapping and edge crossing issues, since
there is no need for layout whatsoever. The most com-
mon tasks of graph visualization can be directly performed
against the adjacency matrix itself except for path traver-
sals, in which node-link is more natural [5]. Nevertheless,
users are not used to perform these tasks using matrices and
need a before-hand training to undertand its contents. In
general, the node-link approach is more effective for small
and sparse networks, whereas matrices are more suitable
when the graph is big and dense [5].

Some examples of real-world software implementing the
previously described ideas of node-link representations are
IsaViz4, InfoVis5, VisualRDF6 and RDF Gravity7.

To the best of our knowledge no other works use matrices
to visually represent RDF data. However, there are other
areas of study where these kind of visualizations have been
successfully applied, for example social networks [7].

3. ADJACENCY MATRIX VISUALIZATION
We propose an RDF visualization tool based on a 3D ad-

jacency matrix of subjects, predicates and objects. This
representation provides a more intuitive view of the struc-
ture and distribution of RDF statements within the data
set, no matter the magnitude of the data.

We start by converting the plain RDF data into a com-
pact representation [6], so that the information is more eas-
ily manageable. The first step is assigning a unique numeric
ID to each different subject, predicate and object. To do
so, we construct a dictionary that matches strings to IDs
and vice versa. We split the dictionary in three different
areas depending whether the string appeared as a subject,
predicate or object. Moreover, we add a fourth area where
we include all those strings that appear both as a subject
in at least one triple, and as an object in another one (See

4http://www.w3.org/2001/11/IsaViz/
5http://ivtk.sourceforge.net
6http://visualrdf.sourceforge.net/
7http://semweb.salzburgresearch.at/apps/
rdf-gravity/



Dictionary

A

B

D

p1

p2

Shared
1.B

Subjects
2. A

Objects
2. C
3. D

Predicates
1. p1
2. p2

Original Triples
A p1 B .
B p2 C .
B p2 D .

C

p2

ID
1
.
.
.
.
n

Transformed Triples
2 1 1 .
1 2 2 .
1 2 3 .

Figure 1: Example of dictionary areas and their ID
assignations for a simple RDF graph.

Figure 1). Making this distinction is really important, be-
cause this shared subject-object area represents the links
between RDF resources. We sort each dictionary block in
lexicographic order, and then we sequentially assign numer-
ical IDs to each entry, leaving the first indices to the shared
area and then continuing with the subjects and objects, as
depicted in Figure 1. Note that IDs are not globally unique,
they depend on the area that they apply to. For instance,
ID 2 will match to a different string depending whether we
refer to the second predicate or the second subject.

Thereafter, instead of dealing with RDF statements con-
taining long strings, we just need to represent them as triples
composed by three integers referring to entries in the dictio-
nary. This triple (s, p, o) can be seen as a (x, y, z) coordinate
in a 3D space that can be plotted as point in a 3D scattered
plot. We let the y axis represent subjects, the x axis ob-
jects and the z axis predicates. We use OpenGL8 to be able
to render on screen a huge amount of points by using the
hardware-acceleration facilities of the graphics card.

Since we are using a two-dimensional output device, such
as a screen or paper, we need a projection to reduce these
3D points into a 2D space. We use an orthogonal projection,
so all points are aligned to the axis and hence, they are not
affected by any perspective correction. Given that we are
using OpenGL as renderer, we can let the user rotate and
zoom the view to have different 3D perspectives of the data.
The first and most interesting view is the one that places the
camera on the z axis looking at the origin, therefore showing
a 2D figure comparing subjects against objects (Figure 2).
In order not to dismiss predicates, we color them using a
highly-contrasted color wheel.

Each axis scale is annotated using the IDs, so the user can
get a first sight of the amount of subjects and objects. Since
we are using a lexicographic order on each axis, all URIs,
blank nodes and literals are grouped due to the leading
characters <"_. We can also distinguish the shared subject-
object area of the dictionary, the rectangle at the origin
highlighted using a different background color. This area
is quite interesting indeed, because it represents the links
among RDF resources. For instance, the proportion of this
area respect to the total figure expresses the connectivity of
the RDF graph. If this shared area is huge, it means that
the data set mainly depicts resources and connections among
them. Conversely, when this area is small it suggests that

8http://www.opengl.org/

the RDF resources are barely interconnected, and the data
set mostly describes properties of several isolated entities.
This area is also interesting from the RDF store and search
point of view because it represents the elements involved in
subject-object joins, which are very common in SPARQL
queries.

Although we use a compact representation of the RDF
graph and OpenGL to enhance performance, scalability is
still an issue when dealing with huge RDF data sets such as
DBPedia9, which contains around 1 billion triples. Trans-
fering that amount of points to the graphics card would be
really slow, if feasible at all. We consider that many are
redundant, and therefore can be directly dismissed. We de-
cided to use a very simple systematic sampling approach to
keep only every k-th triple of the collection, and discard all
the rest. We found that rendering 400k points was a reason-
able compromise between frame rate and detail for our test
machine10. Moreover, we discovered that by reducing the
number of rendered points we improve the occlusion prob-
lem of some points being hidden behind others.

We can enhance user experience by providing some extra
features for interactively browsing the data. Besides zoom
and free 3D rotation, we let the user hover the mouse above
the graphic, showing details of the nearest triple under the
cursor. To do so we just need to perform the inverse of the
modelview transformation matrix and obtain a (s, p, o) co-
ordinate. Then, we search the nearest triple in the dataset
compared to the cursor position in terms of euclidean dis-
tance, and we regenerate the full triple as string using the
dictionary. To perform this operation efficiently, we keep
the triples ordered and access them using binary search.

4. ANALYSIS
In this section we show how to use our proposal to browse

real-world RDF data sets and interpret its features. We use
the Billion Triple 2010 data set11 from the Semantic Web
Challenge. Since it is too big, we first split it into more
manageable pieces. We use the host available in the fourth
provenance component of the NQUAD format, obtaining as
a result several RDF data sets of different sizes. Then, we
perform an exploratory analisis of the data using our tool,
seeking which are the most common patterns and how to
interpret them against the underlying data.

Figure 2 shows the Bibsonomy data set adjacency matrix
as browsed using our tool. To put the reader in context,
Bibsonomy is a social bookmarking and scientific publication
sharing system that allows users to share online references to
their favourite documents with other groups of people within
the community. We choose it because it contains several of
the most significative patterns found in RDF data.

The first thing that comes to our attention is that we can
identify regular shapes. We can see on top of the figure that
it contains 13 million triples and 409 different predicates,
being a considerably big data set. If we check the labels
of each axis we notice that it contains 3.6 million subjects
and 5 million objects, being the proportion of objects bigger
than the subjects. If we obvserve the shared area on the
left we see that it occuppies an important proportion of the
whole figure. This fact indicates that there is a fair amount

9http://dbpedia.org
10Macbook Core2Duo 2Ghz. 4Gb RAM. GeForce 9400M.
11http://km.aifb.kit.edu/projects/btc-2010/



Figure 2: Bibsonomy data set as shown using our visualization approach.

of connections among resources in the graph.
Then, we can start hovering the mouse on the figure to

check what kind of information contains each of the areas of
the graph. We start with the shared area and we notice that
all the appearing lines are just blank nodes used to define
RDF lists using the RDFs container membership property
rdfs:_1, rdfs:_2, and so forth. Blank nodes are intermedi-
ate nodes employed to link other resources together (as seen
in the lists example), therefore, they usually appear in the
shared area.

If we check the green and purple areas on top of the shared
area, we see the definitions of authors and editors linked to
the previously mentioned blank nodes. If we browse the big
brown area on the right, we find out that it gathers all the
names of the authors of the documents. Also very important
are the light-green vertical lines on the right of the figure.
They represent rdf:type defining the class of each subject.
As we see, we can analyze each of the areas and understand
what kinds of resources and links exist on the data set.

While browsing the different data sets of BT2010, we
found the following patterns:

• Vertical line. Represents an object that is related
to many subjects. It is very common on many data
sets, for instance when using rdf:type as shown above.
Other examples include instances of classes (many sub-
jects related to the type foaf:Person) or commonly
used literals such as dates. We would like to note, that
these lines can be thick, i.e. there is a group of objects
with common prefix (and therefore close within the x
axis) that are related to many subjects.

• Diagonal line. They appear when there is a corre-

lation between the subject and object strings. For in-
stance, many URIs from blogs include the date as part
of the URI, and also contain a date property specifying
the date again. It is also very common when resources
have numerical correlative identifiers included in the
URI. We noticed that whenever duplicated or missing
values are present the line is not perfectly straight.

• Scattered rectangle. It appears when an interval
of subjects is related to an interval of objects. For
instance, we may have a set of subjects of the class
Event that are grouped together because their URIs
share a common prefix. They are associated to literals
representing dates, which also share a common prefix
specifying the year. Therefore these relationships can
be enclosed within a square.

Note that there also exist horizontal lines, but they are
very scarce. Normally there are no hub subjects that are re-
lated to many different objects. It can happen, for instance,
when we have big lists gathering many resources of the RDF
data.

Another important result when analyzing RDF data sets
using the adjacency matrix approach, is that we find signs of
locality of reference. All the previously described patterns
are evidences that there is a strong correlation between the
elements in those areas. This fact is crucial when designing
compression schemas for RDF, constructing indices, design-
ing other kind of visualization techniques or devising new
semantic search engines.

The adjacency matrix approach is also valuable to evalu-
ate the complexity of RDF structures. In the bibsonomy ex-
ample, we observe that even though it is a very big dataset,



Figure 3: BT2010 subset of the DBPedida data set in 3D view.

its internal schema is quite simple. On the other hand, more
diverse data sets like DBPedia, are much more complex as
shown in Figure 3.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we face the problem of visualizing large-

scale RDF data. We propose a new method based on the
RDF adjacency matrix to alleviate the limitations of previ-
ous node-link graph visualization approaches.

The major strength of our approach is that it is able to
deal with huge data sets with millions of statements and yet
provides a means to understand the overall structure of the
graph. We used an example to show how to interpret the
different pattens that appear in the plot and we provided a
possible explanation of why these patterns occur in terms of
RDF statements. We showed that this method does not sub-
stitute, but complements previous visualization approaches.

We would like to highlight that using our visualization
method, we discovered evidences that many RDF data sets
present locality of reference. This assumption is crucial
when designing RDF stores and search engines.

Our approach might be useful to any user wanting to
understand internal structures of RDF data sets, namely
semantic content generators, RDF data-mining analysts or
RDF store designers. It also serves as a basis to fine-tune
existing solutions.

There is much room for future works based on our ap-
proach. Two areas of study that we deem particularly in-
teresting are trying other dictionary identifier assignment
algorithms besides lexicographic, and applying clustering al-
gorithms to automatically detect regular patterns.

6. ACKNOWLEDGMENTS
Funded by the MICINN (TIN2009-14009-C02-02) and the

Millennium Institute for Cell Dynamics and Biotechnology

(ICDB) (Grant ICM P05-001-F). The second author is granted
by a fellowship from the Regional Government of Castilla y
Leon (Spain) and the European Social Fund.

7. REFERENCES
[1] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.

Linked data on the web LDOW2008. In WWW08,
pages 1265–1266, 2008.

[2] J. Dokulil and J. Katreniakova. Visualization of Large
Schemaless RDF Data. International Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies, pages 243–248, 2007.

[3] J. Dokulil and J. Katreniakova. RDF Visualization -
Thinking Big. 2009 20th International Workshop on
Database and Expert Systems Application, pages
459–463, 2009.

[4] J. Dokulil and J. Katreniakova. Using Clusters in RDF
Visualization. 2009 Third International Conference on
Advances in Semantic Processing, pages 62–66, 2009.

[5] J.-D. Fekete. Visualizing networks using adjacency
matrices: Progresses and challenges. 2009 11th IEEE
International Conference on Computer-Aided Design
and Computer Graphics, pages 636–638, 2009.

[6] J. D. Fernández, M. A. Mart́ınez-Prieto, and
C. Gutierrez. Compact representation of large RDF
data sets for publishing and exchange. In Proceedings of
the 9th international semantic web conference on The
semantic web, ISWC’10, pages 193–208, 2010.

[7] N. Henry, J.-D. Fekete, and M. J. McGuffin. NodeTrix:
a hybrid visualization of social networks. IEEE
transactions on visualization and computer graphics,
pages 1302–9, 2007.

[8] D. Karger and M. Schraefel. The Pathetic Fallacy of
RDF. ISWC06, 2006.


