
Distributed Indexing for Semantic Search

Peter Mika
Yahoo Research

Avinguda Diagonal 177
Barcelona, Spain

pmika@yahoo-inc.com

ABSTRACT
In this paper we describe the process of building indices for
semantic search using MapReduce. We compare the two
most straightforward representations of RDF data, the hor-
izontal index structure using parallel indices and the vertical
index structure using fields. We measure the cost of building
indices and also compare retrieval performance on keyword
queries and queries restricted to particular properties.

1. INTRODUCTION
In the last two years, the Semantic Web has been steadily

growing in size, mostly as a result of the Linked Data effort
and a renewed interest in annotating web pages using mi-
croformats and RDFa. Our own estimates put the size of
the Semantic Web over 100 billion triples. The amount of
data to be indexed by semantic search engines means that
single machine solutions are not sufficient any more, and in-
dexing has to be done in a distributed fashion in order to
be efficient. In this short paper we look at the efficiency
of building index structures using Hadoop, the open source
implementation of MapReduce that is increasingly becom-
ing the standard framework of choice in cloud computing.
We implement the two most common ways of indexing RDF
data, i.e. horizontal indexing using two parallel indices and
vertical indexing using one field per property.1 We com-
pare these two methods by measuring the cost of indexing
as well as their performance in retrieval, and also discuss
their limitations in scalability.

2. RELATED WORK
Although most attention in the Semantic Web commu-

nity has focused on building triple stores with expressive
query languages and using database technology, there are a
small number of Semantic Web search engines that imple-
ment large-scale search using inverted indices as studied in
Information Retrieval. The best known example Sindice and
its open source IR engine Siren [6], which builds on Lucene,
the popular Java IR package. There are also a number of
works on the core topic of ranking for semantic search, where
the authors typically provide their own implementations of
index structures to fit the query needs of a particular sce-
nario, see e.g [3, 4, 7, 8]. In most cases, researchers build on

1This is not to be confused with horizontal and vertical par-
titioning of index structures.

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

Lucene and rely on single machine indexing for their exper-
iments.

The general idea of using MapReduce for distributed in-
dex generation is described in modern textbooks such as [5].
In fact, indexing has been one of the examples given in the
original description of Google’s version of MapReduce by
Dean and Ghemawat [2]. Hadoop is an open source imple-
mentation of MapReduce. It has been used in a relatively
straightforward manner by the open-source Katta project2

for generating text indices for Lucene.
Our focus is on large scale indexing to support the basic

query functionality typically expected from Semantic Web
search engines. To our knowledge, our work is the first de-
tailed description of building index structures for RDF data
using MapReduce and comparing possible alternatives with
respect to the efficiency of both index construction and re-
trieval performance.

3. INDEXING RDF DATA
The index structures that need to be built for any par-

ticular search engine are largely determined by the required
query functionality. In the case of semantic search engines,
the basic functionality expected from (and provided by)
search engines is the ability to retrieve resources based on
words that must appear in the values of properties, possi-
bly restricted by the name of the property where the words
should appear.

Examples include looking for resources that contain the
words peter mika barcelona, possibly made more precise by
restricting occurrences to certain fields, e.g. foaf:name =
”peter mika” vcard:location = ”barcelona” in one possible
query representation, where foaf:name stands for the name
property from the FOAF ontology and vcard:location stands
for the location property from the VCard-in-RDF ontology.

The two fundamental ways of achieving this functionality
is by using either parallel indices or fields, functionalities
commonly present in existing retrieval packages such as Solr
or MG4J. The first option is illustrated in Table 1. For
simplicity, we will call this a horizontal index on the basis
that RDF resources are represented using only two fields,
one field for the tokens and one for the properties. This is a
parallel index in that there is a correspondence between the
positions in the different fields, i.e. the value in the token
field at a given position is (part of) the value for the property
written to the same position in the property index. In order
to perform the queries above, the query language needs to

2http://katta.sourceforge.net/

Field p1 p2 p3 p4
token peter mika 32 barcelona
property foaf:name foaf:name foaf:age vcard:location

Table 1: Horizontal indexing of RDF data

Field p1 p2 p3 p4
foaf:name peter mika
foaf:age 32
vcard:location barcelona

Table 2: Vertical indexing of RDF data

provide the alignment operator, which restricts matches in
a certain field based on what appears at the same position
in another field of the index.

The second option, which we will call a vertical index and
show in Figure 2, is to create a field for each property oc-
curring in the data. In this case performing our structured
queries only requires the ability to restrict matches by field.
Positions can be still useful, e.g. to make sure the first and
last name are matched as consecutive words.

4. DISTRIBUTED INDEXING USING
MAPREDUCE

The MapReduce paradigm is an ideal fit for the task of
building basic inverted indices. The map phase can be used
to load documents from the distributed file system and parse
them into (key,value) pairs corresponding to terms and doc-
uments respectively. The first step in the reduce part of the
framework performs precisely what is required to ”invert”,
i.e. to collect all values belonging to the same key, cor-
responding to the documents that contain the same term.
This is the input to the user-provided reduce function, which
can write the index to the distributed file system, e.g. by us-
ing the indexing component of any IR package designed for
single machine indexing. In our case, we use MG4J.The re-
sulting (sub-)indices, where each index contains a subset of
the dictionary, need to be merged separately, a functionality
that MG4J provides.

On top of this basic scheme, we need two simple exten-
sions to implement positions and fields. When positions
are required, the value that is passed between mapper and
reducer becomes a pair of document and position. For im-
plementing fields, we need to capture the field identifier, and
the key itself becomes a pair of term and field id. This is
straightforward to do in Hadoop, where both keys and val-
ues can be arbitrary Java objects as long as they can be
serialized.

Though all of the above is easy to implement, there are
two more practical requirements that are somewhat more
difficult to address. The first is that the values need to
be sorted, because indexing requires to store occurrences in
increasing order of document identifiers and positions. Al-
though it is possible to sort values within the reduce function
itself, the size of the memory would limit the maximum num-
ber of occurrences per term. (In particular, memory would
run out for the most popular terms.) Fortunately, there is
a way to implement a secondary sort on values by rewriting
part of the sort operation that precedes the reduce, which is
performed on disk. The key idea is to make the value a part
of the key, and then rewrite the sort function to take the

values into account. The partitioning of data among reduc-
ers and the grouping of data on reducer nodes need to be
rewritten as well, because these operations are now done on
only a part of the key. The price to pay is an increase in the
amount of data that needs to be passed between mappers
and reducers.

The second requirement for indexing (at least in the case
of MG4J) is that the number of documents needs to be
known at the beginning of writing out occurrences for a
given term. This is a problem, because Hadoop only pro-
vides an iterator on the values, and the developers has no
way of knowing how many values are there to read. This
problem is non-trivial, and even more complex when con-
sidering positions, since we need to know the number of
documents, not the number of occurrences (document, po-
sition pairs) that will be read. Our solution is again to
trick the framework, in this case by introducing a dummy
occurrence for every term and document pair that is be-
ing indexed. These occurrences have a document id that is
set to −1, which is less than the document id of the first
real document, and therefore they are sorted to appear as
the first in the list of values. Counting these dummy oc-
currences tells us how many documents will be read. We
again pay the price of increased load, although there will be
only one dummy occurrence per document and term com-
bination, which is much less than the total number of (key,
value) pairs when considering positions.

5. EXPERIMENTS
We have implemented distributed indexing using Hadoop

as described above, and using MG4J as the underlying search
engine.

For our experiments, we have used the ”urified” version
of the Billion Triples Challenge data set from 2009, which
is available for download in NTuples format.3 For indexing,
we have pre-grouped the data by subject, i.e. collecting
all the triples with the same subject. The uncompressed
size of this input data is 247GB. This includes all triples,
although only the triples literal valued objects were indexed.
To further reduce the size of the data to be indexed, we
have ignored subjects with more than 10KB data. We have
also ignored words that appeared on our blacklist of 389
stopwords. Lastly, we ignored words consisting entirely of
numbers. While this clearly should not be done in such an
indiscriminate manner, it helped to reduce the dictionary
size, which is otherwise bloated by numbers.

To further increase efficiency, we have encoded URIs using
MG4J’s LcpMonotoneMinimalPerfectHashFunction, which
provides a hash function that is minimal, perfect and mono-
tone, and given sufficient memory can be efficiently built
even on a single machine [1]. URI encoding is critical in
reducing the amount of data that needs to be processed at
both indexing and retrieval time. In our case, we had to
encode 127 million URIs (of 9.7GB total size in plain text).
The resulting hash function occupies only 307MB on disk,
i.e. uses only 2.4 bytes per URI. We distribute these files to
mappers using Hadoop’s DistributedCache mechanism (re-
ducers do not need access to the hash function) and due to
its small size we are able to keep it in memory.

Indexing our data taught us a number of valuable lessons.

3http://km.aifb.uni-karlsruhe.de/ws/dataset_
semsearch2010/000-CONTENTS

Scheme Indexed URIs Indexed triples Occurrences Size before merging Merged index size
Horizontal 114,530,196 273,922,563 2,931,625,024 4.554 MB 8,948 MB
Vertical 114,530,196 262,564,786 1,438,318,071 5,195 MB 10,779 MB

Figure 1: Index statistics

First, despite the relative maturity and user friendliness of
Hadoop, fine tuning the process of indexing was non-trivial
especially when configuring memory usage. Hadoop itself
has a large number of parameters that determine how much
memory is used for various parts of the framework, and these
critically affect how much memory is left for the user. In
most cases, there is a real trade-off between system perfor-
mance and free memory for processing. The second set of
experiences relate to the scalability of indexing. One clear
bottleneck arises when the data is overly skewed in the dis-
tribution of properties, i.e. when certain properties are much
more commonly used in the data than others. This causes
an unbalanced distribution of load among reducers, with the
effect that some reducers will end up with too much data to
shuffle, sort and reduce. Another limitation affects the ver-
tical scheme: the number of fields that we could index was
limited by the size of the available memory on the compute
nodes. The reason is that for efficient disk usage MG4J it-
self needs to cache data in memory separately for each field.
This is a hard constraint. The solution we took was to limit
the indexing to the top 300 datatype properties for the ver-
tical scheme for a case where reducers had roughly 2GB of
available memory. Although we have not done so, we could
have built indices for additional fields by taking multiple
passes at the data.

5.1 Indexing performance
Table 1 shows the overall statistics of the indexed data

and the resulting indices. Per above, we index less triples
in the vertical scheme because only the most frequent prop-
erties are indexed. Still, due to the dominance of these top
properties, we loose less than five percent of the triples, and
presumably triples with predicates that are less likely to be
searched for (since they are less often provided).

We report the execution times and other key performance
metrics in Table 2. We note that reporting accurate run-
times using Hadoop is problematic. The runtime reported
by the system is a measure of the execution time from start
to finish, which is influenced by a number of factors, in par-
ticular cluster load. Depending on the availability of a clus-
ter the individual map and reduce tasks may spend different
periods of time in a pending state, i.e. waiting to be exe-
cuted. Therefore we report the runtime as an indication
only. Using the latest version of Hadoop, we can obtain
the time that mappers and reducers spent in execution in
aggregate (SLOTS MILLIS MAPS and SLOTS MILLIS REDUCES).
However, this time will still include the time spent on failed
tasks. (The larger the cluster, the more likely that indi-
vidual jobs will fail, requiring a restart of that part of the
processing.) Speculative execution, which is the ability to
preemptively launch duplicates of slow or failing tasks, leads
to further double counting. Lastly, it’s problematic to com-
pute the true runtime from these numbers because the map
and reduce phases partly overlap.

Despite these caveats, it’s clear that most of the time in
execution is spent in the reduce phase. One minor issue
with the map phase is that given a small cluster capacity,

Metric Horizontal Vertical
Real time 3h 18m 4h 51m
Maps 2,000 2,000
Time per map 166s 581s
Map output records 4.018 ∗ 109 2.627 ∗ 109

Map output size 144 GB 68 GB
Reduces 20 20
Time per reduce 8371s 14987s
Reduce shuffle bytes 42 GB 28 GB

Figure 2: Comparison of indexing efficiency for hor-
izontal and vertical indexing

the high number of mappers —which is determined by the
input size— can become a problem. For the current job size
of 2000 mappers and considering two maps per node, for
the ideal case we would need a cluster of 1000 machines.
If that is not available, there will be less than ideal paral-
lelism although most of the time will be still spent in the
reduce phase. The number of mappers can be lowered by
compressing the data, with some cost of uncompressing at
runtime.

The time spent by reducers can be decreased by simply
increasing the number of reducers, which is a user config-
urable parameter. The number of reducers also determines
the number of subindices that will be generated. It is clear
that with more and smaller subindices merging will get less
efficient, although we have not yet explored the trade-off
between indexing time and merging time.

5.2 Retrieval performance
We measure the performance of our indices by execut-

ing the same query set that is used for the Entity Search
Track at the Semantic Search Workshop 2010. This query
set contains 4497 queries sampled randomly from the queries
that have been submitted at least three times to Yahoo’s US
search engine in January, 2009.4. We measure the time of the
actual query execution, i.e. the duration of the process()

call of the QueryEngine instance in MG4J. We focus on the
relative performance of the various schemes; the absolute
performance of the search engine may depend on many fac-
tors, in particular the hardware environment.

We assessed performance for two kinds of queries, keyword
queries and unigram queries with a field restriction. For the
latter, we have generated potential candidate queries from
our data, by looking for matches of the query words within
particular properties. It is future work to experiment with
other query types or mixed loads generated to simulate some
particular application scenario.

Figure 3 shows the convergence of query execution times
for keyword queries. The average query execution time in
the horizontal scheme was around 80 ms in comparison to
around 1s for the vertical scheme, i.e. the horizontal scheme

4This dataset is available as part of the Yahoo! Webscope
program, see http://webscope.sandbox.yahoo.com/

!"#$%&$

"#$%&$

'$

#''$

(''$

)''$

"''$

*'''$

*#''$

*(''$

*
'
'
$

#
+
'
$

(
'
'
$

+
+
'
$

,
'
'
$

"
+
'
$

*
'
'
'
$

*
*
+
'
$

*
-
'
'
$

*
(
+
'
$

*
)
'
'
$

*
,
+
'
$

*
!
'
'
$

#
'
+
'
$

#
#
'
'
$

#
-
+
'
$

#
+
'
'
$

#
)
+
'
$

#
"
'
'
$

#
!
+
'
$

-
*
'
'
$

-
#
+
'
$

-
(
'
'
$

-
+
+
'
$

-
,
'
'
$

-
"
+
'
$

(
'
'
'
$

(
*
+
'
$

(
-
'
'
$

(
(
+
'
$

./01234$567/8$ 9:05;:6<34$567/8$

Figure 3: Retrieval performance on keyword queries

!"#$%&$

"!'$%&$

($

)(($

*(($

+(($

"(($

,(($

-(($

'(($

!(($

#(($

)((($

)
(
(
$

*
(
(
$

+
(
(
$

"
(
(
$

,
(
(
$

-
(
(
$

'
(
(
$

!
(
(
$

#
(
(
$

)
(
(
(
$

)
)
(
(
$

)
*
(
(
$

)
+
(
(
$

)
"
(
(
$

)
,
(
(
$

)
-
(
(
$

)
'
(
(
$

)
!
(
(
$

)
#
(
(
$

*
(
(
(
$

*
)
(
(
$

*
*
(
(
$

*
+
(
(
$

*
"
(
(
$

./01234$567/8$ 9:05;:6<34$567/8$

Figure 4: Retrieval performance on unigram queries
with property restriction

performed 10-12 times better. This can be explained by the
physical storage of fields: for keyword queries without field
restrictions, a separate disk-seek is required to inspect the
contents of the each field.

Similarly, Figure 4 shows the convergence of query execu-
tion times for unigram queries with property restriction, i.e.
queries of the form foaf:name = mika. Somewhat surpris-
ingly, the horizontal scheme seems to outperform the vertical
scheme, which we can not fully explain at this point. The
convergence for the vertical scheme is slow: field restrictions
produce very uneven execution times. Execution times vary
from a few milliseconds to several seconds. The explanation
is that queries on less frequently used fields or fields with
smaller values are more efficient to evaluate. We plan to
repeat these experiments with larger numbers of queries to
achieve more solid convergence.

6. DISCUSSION
In this paper we have described in some detail the imple-

mentation of building index structures for RDF data using
Hadoop’s MapReduce. The presented work provides a pre-
liminary analysis of the efficiency of distributed indexing
using MapReduce and retrieval performance using various
index structures. In future work, we may look at

• Additional query types such as joins, and hybrid queries,
i.e. queries containing keywords with and without
property restriction

• Indexing object properties in addition to datatype prop-
erties

• Different collections, in particular Linked Data versus
embedded metadata (RDFa, microformats)

• CPU usage for different query loads and index struc-
tures

Last, but not least we are looking for additional ways of
improving the performance of both index generation and
retrieval, for example by exploiting known properties of the
query stream to be evaluated.

Acknowledgement
The author would like to thank Roi Blanco for his advice

on this paper.

7. REFERENCES
[1] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna.

Monotone minimal perfect hashing: searching a sorted
table with O(1) accesses. In C. Mathieu, editor, SODA,
pages 785–794. SIAM, 2009.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[3] A. Duke, T. Glover, and J. Davies. Squirrel: An
advanced semantic search and browse facility. In
ESWC, pages 341–355, 2007.

[4] M. Fernandez, V. Lopez, M. Sabou, V. Uren, D. Vallet,
E. Motta, and P. Castells. Semantic Search Meets the
Web. In IEEE Semantic Computing, pages 253–260,
2008.

[5] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[6] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
IJMSO, 3(1):37–52, 2008.

[7] C. Rocha, D. Schwabe, and M. P. Aragao. A hybrid
approach for searching in the semantic web. In
Proceedings of the 13th international conference on
World Wide Web, pages 374–383. ACM Press, 2004.

[8] H. Wang, Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran,
Y. Yu, and Y. Pan. Semplore: A scalable ir approach to
search the web of data. Web Semantics: Science,
Services and Agents on the World Wide Web, 7(3):177
– 188, 2009. The Web of Data.

