
Incremental Development of
Domain-Specific Document Retrieval Systems

Mihye Kim and Paul Compton
School of Computer Science and Engineering

University of New South Wales
Sydney NSW 2052 Australia

+61 2 9385 6531
{mihyek, compton}@cse.unsw.edu.au

ABSTRACT
We have proposed and implemented a browsing
mechanism for domain-specific document retrieval systems
based on the conceptual structure of Formal Concept
Analysis. This paper concerns how knowledge acquisition
mechanisms for incremental development are activated to
improve the system’s quality as browsing evolves. The
knowledge acquisition mechanisms for the system are
based on Formal Concept Analysis (FCA) and Ripple-
Down Rule (RDR) knowledge acquisition techniques. Our
experience with the prototype suggests that a user can fairly
easily add and annotate new documents so that they can be
readily retrieved and also distinguished from less relevant
documents. It also appears that our approach can apply to
conceptual modelling of domain taxonomies
collaboratively created and maintained over time by users
(or authors) without the mediation of knowledge engineers
and suggest how the resultant ontology may be integrated
with other ontologies.

INTRODUCTION
Domain-specific information retrieval normally depends on
general search engines, which make no use of domain
knowledge and require a user to look at a linear display of
loosely organised search results or handcrafted specialised
systems with a better browsing interface but which are
costly to build and maintain.

An alternative approach for specialized domains can be to
allow users to create their own organization of documents
and to assist them in ensuring improvement of the system’s
performance as it evolves. The purpose of this study is to
develop such a system suitable for organisations as well as
individuals to incrementally and easily build and maintain
their own information retrieval systems. We have proposed
and implemented a browsing mechanism for such a system
based on the conceptual structure of Formal Concept
Analysis [16, 17]. This paper concerns how knowledge
acquisition mechanisms for incremental development are
used to improve the system's quality as browsing evolves.

We have previously demonstrated incremental development
of document management systems based on selecting
keywords that discriminate between documents [14, 15]

using RDR knowledge acquisition and maintenance
methodology. The RDR approach was initially developed
for knowledge acquisition for knowledge based systems
[7]. Although, as demonstrated in other RDR work, RDR
greatly assists context-specific knowledge acquisition. it
does not organise the knowledge in a way that is suitable
for browsing. One of the aims here is to integrate the RDR
incremental approach with the browsing advantages of
FCA. FCA has previously been used with RDR expert
systems as an explanation tool [21].

Our test environment is a system (http://pokey.cse.unsw.
edu.au/servlets/Search) that gives access to all the Banff
Knowledge Acquisition Workshop papers with around 200
in recent years (http://ksi.cpsc.ucalgay.ca:80/KAW).
Another test domain (http://pokey.cse.unsw.edu.au/ servlets
/RI) is for research topics in the School of Computer
Science and Engineering, UNSW. There are around 150
research staff and students in the School who generally
have homepages indicating their research projects. The aim
here was to allow staff and students to freely annotate their
pages so that they would be found appropriately within the
evolving lattice of research topics. The goal is a system to
assist prospective students and potential collaborators in
finding research relevant to their interests.

In the next section, we address our approach by reviewing
related approaches in literature. Next we describe FCA to
explain how lattice-based browsing is formed and how
knowledge acquisition mechanisms for incremental
development are activated. Then we present the system that
we have implemented focusing on knowledge acquisition
strategies. Finally we discuss how this could be further
improved particularly in how it may be integrated with
other ontologies.

SYSTEM APPROACH
Broadly speaking there are two ways in which a user
interacts with document retrieval systems. In one the user
formulates a specific query and some documents are
retrieved in response. This process is normally iterative in
that the user refines (or changes) the query on the basis of
the documents retrieved by each query. In the second
approach the documents are grouped and the document

groups organised into some sort of structure that can be
browsed. That is, from any point in the structure at least
some other related parts of the structure can be identified
and moved to.

The ideal would be that specific queries would always
produce the most relevant documents. Despite
improvements in this area (e.g. Google), specific queries
remain very frustrating: the only search terms the user can
think of, occur in myriad other contexts and perhaps even
do not occur in some relevant documents. As a result a
browsing approach is supported in many information
retrieval systems. With browsing users quickly explore the
search domains and can easily acquire domain knowledge
[19]. Typically, a hierarchy is used for browsing and
documents are grouped using some sort of clustering
algorithms. Hierarchical Agglomerative Clustering (HAC)
algorithms are probably the most commonly used.

The problem with a hierarchical clustering is category
mismatch [9, 13]. If one goes down the wrong path one
must go back up the hierarchy and start again. There is no
mechanism for navigating to other clusters, as there is only
a simple taxonomy structure. A further critical issue in a
browsing scheme is the origin of the terms by which the
documents are grouped. One can attempt to arrive at some
global taxonomy to satisfy all possible users as used by
sites like Yahoo and the Open Directory Project
(http://dmoz.org/). In these global systems the category
mismatch problems can be very severe.

As an alternative, documents can be organised using
ontologies for browsing a specific domain. In recent years
ontologies have become a major subject of interest in
applications ranging from search using large taxonomies
categorising Web sites in general (such as the Open
Directory Project) or specific communities (such as KA2) to
e-commerce (such as on amazon.com). One of main aims
of this approach is to facilitate the sharing of information
between communities as well as individuals within the
groups. An ontology infrastructure for the Semantic Web
is now also under way along with Web-based ontology
representation languages such as XML/S (http://www.w3.
org/XML), RDF/S (http://www.w3.org/RDF), OIL (http://
www.ontoknowledge.org/oil), DAML and DAML+OIL
(http://www.daml.org). A good example of this type of
activity is the (KA)2 initiative [2]. (KA)2 starts out with an
ontology appropriate to the domain with the expectation
that people in the community will annotate documents
according to the ontology. These same users should also be
able to use the ontology to retrieve documents entered by
others. There are likely to be considerable practical
advantages to even very large communities committing to
specific ontologies, and part of education would be to learn
these ontologies. However, despite the practical advantages
of a community committing to ontologies, we have long
held the view that at base any knowledge structure is a
construct which should be allowed to evolve over time [7].

Hence rather than committing to a priori ontologies and

expecting that all documents will be annotated according to
the ontologies, our aim is to explore the possibilities of a
system where the user can annotate a document however
they like and that the ontologies will evolve accordingly.
Rather than this being totally ad hoc, we would like the
system to assist the user to make extensions to the
ontologies that are in some way improvements. We are not
concerned with automated or semi-automated ways of
discovering an ontology appropriate to a document or
corpus [1, 18]. Despite the potential of such approaches,
from our more deconstructionist perspective, we are more
interested in the role of the reader or user interpreting
documents and deciding on their annotation and
development of an ontology. The user here may be the
individual user, an expert for a specialised domain or a
small community. However, this does not preclude the
inclusion of ontologies either constructed by an expert or an
ontology imported from elsewhere, as part of the
ontological structure preferred by the user.

An alternative to a hierarchy for browsing is lattice-based
navigation using Formal Concept Analysis (FCA). In this
approach, a document is annotated by an expert with a set
of controlled terms. From this a concept lattice is
constructed using the mathematical formulae of FCA. The
significant advantage of this approach is that the
mathematical formulae produce a conceptual structure
which automatically provides generalisation and
specialisation relationships among the concept nodes. This
lattice structure allows one to reach a group of documents
via one path, but then rather than going back up the same
hierarchy and guessing another starting point, one can go to
one of the other parents of the present node as a way of
navigating across the domain.

A number of researchers have proposed this lattice
structure for document retrieval [3, 4, 13, 20]. Several
researchers have studied the concept lattice for domain-
specific information retrieval [5, 6, 8, 22]. We have also
developed an FCA-based browsing mechanism [16, 17].
The focus in our previous work was to examine the
advantages and capabilities of the lattice-based retrieval.
The main difference in the work here is a greater emphasis
on incremental development and evolution, and knowledge
acquisition tools to support this for specialised domains.
Our aim is a browsing scheme which can be collaboratively
created and maintained and where users evolve their own
organisation of documents but are assisted in this to
facilitate improvement of the system’s performance as it
evolves.

Another difference is that our focus is on a web-based
system using a hypertext representation of the links to a
node, but without a graphical display of the overall lattice.

FORMAL CONCEPT ANALYSIS FOR THE SYSTEM
Formal Concept Analysis (FCA) is a mathematical theory
which formulates the understanding of a ’concept’ as a unit
of thought comprising its extension and intension as a way
of modelling a domain [12, 24]. The extension of a concept

is formed by all objects to which the concept applies and
the intension consists of all attributes existing in those
objects. FCA generates a conceptual hierarchy of the
domain by finding all possible formal concepts which
reflect the relationships between attributes and objects. The
resulting subconcept-superconcept relationships between
formal concepts are expressed in a concept lattice which
can be seen as a semantic net providing "hierarchical
conceptual clustering of the objects… and a representation
of all implications between the attributes" [25]. More
detailed definitions and examples can be found in [12].

Formal Contexts and Formal Concepts
The most basic data structure of FCA is a formal context.
The set of objects and their attributes constitute a formal
context (Κ) = (G, M, I). G is a set of objects, M is a set of
attributes and I is a binary relation between G and M which
indicates where an object g has an attribute m by the
relationship gIm (also by (g, m) ∈ I). In the original
formulation of FCA, objects were implicitly assumed to
have some sort of unity or identity so that the attributes
applied to the whole object; e.g. a dog has four legs.
Clearly documents do not have the sort of unity where
attributes will necessarily apply to the whole document.
However at this stage of this work we suppose that
documents correspond to objects and the keywords or terms
attached to documents by a user constitute attribute sets.
We define a formal context (C) as follows for our
document retrieval system.

Difinition11: A formal context is a triple C = (D, Κ, I)
where D is a set of documents, Κ is a set of keywords and I
is a binary relation which indicates where a document d has
a keyword k by the relationship dIk (also by (d, k) ∈ I).

For example, Table 1 shows the formal context of C where
D is {1, 2, 3, 4}, Κ is {artificial intelligence, information
retrieval, machine learning, decision tree, natural language
processing, speech recognition, signal representation} and
the relation I is {(1, artificial intelligence), (1, information
retrieval),..., (4, artificial intelligence), (4, natural language
process), (4,speech recognition), (4, signal representation)}.

Then, formal concepts are derived from the formal context
using the basic definition X⊆ D: X a X′ := {k∈K | ∀d∈X:
(d, k) ∈ I}, Y⊆ K: Y a Y′ := {d∈D | ∀k∈Y: (d, k) ∈ I}. A
formal concept is defined as a pair (X, Y) such that X ⊆ D,
Y ⊆ Κ, X′ = Y and Y′ = X where X and Y are called the
extent and the intent of the concept (X, Y). More detailed
mathematical formulae and procedures can be found in [12,
16, 24]. A node in Figure 1 represents a formal concept.

Concept Lattice
The formal concepts of C are expressed in a concept lattice
£ (D, K, I) which is the conceptual structure of FCA and
ordered by the smallest set of attributes. It is a basic

1 This definition and the following material closely adhere

to the Basic Theorem of FCA [24].

A
rt

if
ic

ia
l

In
te

ll
ig

en
ce

In
fo

rm
at

io
n

R
et

ri
ev

al
M

ac
hi

ne
L

ea
rn

in
g

D
ec

is
io

n
T

re
e

N
at

ur
al

L
an

gu
ag

e
P

ro
ce

ss
in

g

S
pe

ec
h

R
ec

og
ni

tio
n

S
ig

na
l

R
ep

re
se

nt
at

io
n

Document 1 X X
Document 2 X X X
Document 3 X X X
Document 4 X X X X

Table 1. Part of formal context in our application.

Figure 1. Concept lattice of the formal context in Table1.

structure for browsing in our approach. The structure is
reformulated incrementally and automatically by adding a
new case and refining the existing cases. To build a
concept lattice we need to find the subconcept-
superconcept relationship between the formal concepts.
This is formalised by (X1, Y1) ≤ (X2, Y2) ⇔�X1 ⊆ X2 (⇔Y2

⊆ Y1) where (X1, Y1) is called a subconcept of (X2, Y2) and
(X2, Y2) is called a superconcept of (X1, Y1). Figure 1
shows the concept lattice of the formal context C in Table
1. This is an implicit and explicit representation of the data
allowing a meaningful and comprehensible interpretation of
the information seen as a sematic net [25]. In our approach
the lattice is incrementally changed by adding a new case
and refining the existing cases.

Conceptual Scaling
Conceptual scaling has been introduced in order to deal
with many-valued attributes [11]. A many-valued context is
defined as a formal context (Κ) = (G, M, W, I) where G is a
set of objects, M is a set of attributes, W is a set of attribute
values. I is a ternary relation between G, M and W which
indicates where an object g has the attributes value w for
the attribute m. Then, if a user is interested in analysing the
interrelationship between attributes, he/she can choose the
required attribute(s) from the multi-valued context and
build a formal context for the attribute(s). This process is
called conceptual scaling. The concept lattices are
structured for each of the separate formal contexts.

Artificial intelligence
/ {1, 2, 3, 4}

Artificial intelligence
Machine learning
Decision tree / {2}

Artificial intelligence
Information retrieval
 / {1, 3}

Artificial intelligence
Natural language -
processing / {3, 4}

Artificial intelligence
Information retrieval
Natural language-
processing / {3}

Artificial intelligence
Natural language -
processing,
Speech recognition
Signal representation /{4}

{All keywords} / {}

Keywords Authors Proceeding
title

Publication
year

doc1 k1,k2,k3 a1,a2 KAW 1996

doc2 k1,k3,k4 a3,a2 EKAW 1999

doc3 k1,k2,k5 a4,a5,a6 PKAW 2000

… … … … …
Table 2. An example table for many-valued contexts.

A concept lattice is derived by combing several concept
lattices into 'nested line diagrams' (e.g. TOSCANA) or a
new form of a lattice structure. Table 2 is an example of
many-valued contexts in our domain. We build a concept
lattice with a set of documents with their keywords as an
outer structure. Then, we scale up using other attributes
into a nested structure. The nested structure is constructed
dynamically in response to the outer structure. Conceptual
scaling is also applied to one-valued contexts in order to
reduce the complexity of the visualisation [23]. In our
present system, an expert can group relevant attribute
values from the formal context C = (D, Κ, I) in the
definition 1. The process is incorporated with building a
thesaurus which is not addressed here as it is beyond the
scope of this paper. Then, when a query is associated with
the thesaurus, conceptual scales are derived on the fly to
group the relevant terms as the nested attributes.

Incremental Knowledge Acquisition
Knowledge acquisition is carried out when a new document
is added with a set of keywords or the keywords of existing
documents are refined. When an expert/user assigns the set
of keywords for a document, some keywords may be
prompted in regard to stored documents or domain
knowledge. The purpose of incremental knowledge
acquisition is to be able to obtain the concepts which are
missed or unknown when concepts are first assigned for a
document. The system guides the user to discover possible
missed concepts through a number of steps. The
knowledge acquisition mechanisms are based on FCA and
RDR techniques. The following definitions are used.

Definition 2: Let C = (D, Κ, Ι) be a formal context, and d
be a new document (d ∉D) and Γ be the set of keywords of
d. The set of keywords is not necessarily a subset of Κ.
Then, the extended formal context of C is defined as C+ =
(D+, Κ+, I+) where D+ = D ∪ {d}, Κ+ = Κ ∪ Γ and I+ = I ∪
{(d, k) | k ∈ Γ}.

Definition 3: Let C = (D, Κ, Ι) be a formal context and Γ
be a set of keywords (Γ ⊆ Κ). Then the set of documents
associated with Γ is defined to be ∆Γ = {d ∈ D | ∃k ∈ Γ
such that (d, k) ∈ Ι}.

We introduce ∆Γ to get a set of documents which has at
least one keyword of Γ. If Γ is a singleton (i.e. Γ= {γ}),
then we will abbreviate ∆γ = ∆Γ = {d ∈ D | (d, γ) ∈ Ι}.

Definition 4: Let C = (D, Κ, Ι) be a formal context. We
define a function ƒ from D to 2K as ƒ: DÈ 2K such that ƒ
(d) = {k ∈ Κ | (d, k) ∈ Ι}.

That is, ƒ (d) returns the set of keywords of d. Let the new
document be d (∉D) with the set of keywords Γ. We
formulate the sub-formal context C′ = (D′, K′, I′) with

D′= ∆Γ + {d} where ∆Γ is in definition 3 and

where ƒ is the function in definition 4. In order to get a set
of relevant keywords of d, we obtain a set of keywords
which are associated with ∆Γ as ƒ(∆Γ) = ƒ (d) from

the context C′. Now the set of relevant keywords is defined
as ℜ = ƒ(∆Γ) - Γ. Then, the function Freq introduced below
is used for each keyword of ℜ (k) to compute the number
of common keywords of Γ with the keywords of all the
documents that have the keyword k from the context C′.
Definition 5: We define a function Freq from 2K × Κ to the
set of natural numbers 1 as follows: Freq: 2K × Κ È 1
such that Freq (Γ, k) = where |X| is the
cardinality of X.

The user can annotate his/her document with a set of
keywords by entering any terms or selecting known terms.
The system displays all the keywords used by other
annotators to be able to share and reuse them. After this
initial assignment, the user can view the other terms that
co-occur with the terms s/he has provided and can annotate
the document with these further terms if desired. The terms
are presented to the user ordered by their frequency in the
lattice, normalised for the number of terms at the node, and
their 'closeness' to the node to which the document is
assigned by the user's initial choice of terms in the
conceptual hierarchy.

In a more detailed explanation, an ordered set of documents
and a set of keywords which are relevant to the new
document are obtained. A sub-lattice £′ (D′, K′, I′) of the
formal context C′ described above is then constructed. This
step is divided into two stages. In the first stage, the
ordered documents are shown to the user along with the
features that are different between the new document and
each of the set of documents. Given a new document d, we
are interested in finding the set of documents Dd that share
some commonalties. We formulate a formal concept ζ
({d},ƒ (d)) with the newly added document d and its set of
keywords Γ. Starting from the concept ζ we recursively go
up to the direct superconcepts of its subconcept in the
lattice to find the next level of the relevant documents.
This procedure is done until the superconcept reaches the
top node of the lattice.

For instance, suppose that there is a concept lattice as
shown in Figure 1 and, a new document d (5) is added
together with its set of keywords Γ {natural language
processing, speech recognition, verbal interference}. Then,
we formulate the sub-context C′ = (D′, K′, I′) where D′ =
∆Γ + {d} = {3, 4, 5}, = {artificial intelligence,

information retrieval, natural language processing, speech
recognition, signal representation, verbal interference} and
I′ is a binary relation between D′ and K′. The sub-lattice

∑ Γ∩ƒ
∆∈

|)(|
kd

d

U
′∈

=′
Dd

df)(K

U
′∈

=′
Dd

df)(K

�

rd ∆∈

£(D′, K′, I′) of the context C′ can be constructed as shown
in Figure 2. The grey coloured box indicates the formal
concept ζ. From the lattice we can get the document ’4’ as
it exists in the direct superconcept of ζ in the lattice and as
such is the most relevant to the document ’5’. Next the
document ’3’ is obtained. Finally, we get an ordered set of
documents {4, 3} relevant to the document ’5’ in the lattice.
The ordered documents are then suggested to the user along
with the features that differ between the new document and
each of the relevant documents.

Figure 2. Lattice £(D′, K′, I′) of the formal context C′ from
the Figure 1.

At the second stage, we elicit the relevant keywords which
are associated with the newly added document d. Then, a
weight for each relevant keyword is calculated by
definition 5. Then, the ordered relevant keywords are
presented to the user with their relevant weight. The user
can select any that are relevant. The user can also view the
sub-lattice and the relevant documents for each of the
relevant keywords during this process. The similarity
relation between keywords and documents can be easily
observed through the lattice.

For example, let a new document d be '5' and the set of
keywords (Γ) of d be {natural language processing, speech
recognition, verbal interference}. Then, we can get a set of
documents associated with Γ (∆Γ) ={3, 4} by definition 3
from the sub-context C′ = (D′, K′, I′) shown in figure 2.
After that, the set of keywords which are associated with ∆Γ

is obtained: that of ƒ(∆Γ) = {artificial intelligence,
information retrieval, natural language processing, speech
recognition, signal representation} by definition 4. Finally
we define the set of relevant keywords as ℜ = ƒ(∆Γ) - Γ =
{artificial intelligence, information retrieval, signal
representation}. Because the set of keywords in ℜ are
candidates for expanding the keywords already associated
with d. Then, for each element of ℜ, a frequency is
calculated by definition 5 as follows: Freq(Γ, artificial
intelligence)=3, Freq(Γ, information retrieval)=1 and

Freq(Γ, signal representation)=1. Through this process, the
user can capture some relevant keywords (here, the
keyword ‘artificial intelligence’ or may others) in adding a
new document.

When the above stage is complete the document is located
at a node. If there is another document(s) already at the
node, the user adding the new document is presented with
the previous document and asked to include keywords that
distinguish the documents. The user can chose to leave the
two documents together with the same keywords.
Ultimately however, every document is unique and offers
different resources to other documents and probably should
be annotated to indicate the differences. The approach used
here is derived from Ripple-Down Rules, but the location
of the document is determined by the lattice structure rather
than the history of the development.

In the RDR approach, when a new rule is added, all stored
cases that can be reach the parent rule (cornerstone cases)
are retrieved. Then the user is required to construct a rule
which distinguishes between the new case and the
cornerstone cases until it excludes all cornerstone cases. In
our document retrieval system, a case which has the same
set of keywords as the new document, becomes the
equivalent of a cornerstone case. If a cornerstone case
exists, the system displays all the keywords used by other
annotators. The user should select at least one different
feature (keyword) from the deployed keywords or specify a
new word to distinguish the cornerstone case(s) from the
new case. Added keywords will result in moving to a lower
node, where other cases may be found those have other
parent nodes. This process is continued until the user is
satisfied.

Another knowledge acquisition issue we have addressed is
when a new term is entered for a new document; this term
may also appropriately apply to other documents already in
the system. This problem could be left until the system fails
to provide an appropriate document for a later search as in
the RDR approach. However, in our approach, the system
passes a log of the addition of a new document to a meta-
expert. The expert can then decide whether any document
at the parent nodes for the new nodes should also have the
term added. The following definitions are used in
identifying the relevant documents and their associated
terms.

Definition 6: Let £ = < V, ≤ > be a lattice. Given a node
θ∈V, the set of direct parents of θ denoted DP£ (θ) is
defined as follows: DP£ (θ) = {α∈V | θ<α and there does
not exist any β∈V such that θ<β & β<α}.

Definition 7: Let £(C) be a concept lattice of the formal
context C = (D, Κ, Ι) and d be the new document. For each
document δ∈D, we can define the set of relevant keywords

for δ with respect to d denoted Reld (δ) as follows:

Reld (δ) = {ƒ (d) \ }
�

X &))(},{(Y)(X, £(C)

Y
∈><∈ δdfdDP

Natural language-
Processing,
Artificial intelligence
Information retrieval
/ {3}

Natural language –
processing
Speech recognition
Verbal interference
 / {5}

Natural language processing
Artificial intelligence
 / {3, 4}

Natural language -
processing,
Artificial intelligence
Speech recognition
Signal representation
 / {4}

{All keywords} / {}

{Natural language processing} / {3, 4, 5}

Natural language processing
Speech recognition
 / {4, 5}

For example, suppose that a new document 5 (d) with the
set of keywords Γ {natural language processing, speech
recognition, verbal interference} is added into the lattice
shown in Figure 1. Then the lattice structure will be
reformulated to cope with the new case. Figure 2 can be a
part of a reconstructed lattice which has a new added node
ζ ({d},ƒ(d)), coloured grey. Now, for the documents
located in the direct parent node of ζ (here the document 4),
we extract the relevant keywords with respect to d by
definition 7: Rel5 (4) = {verbal interference}. The system
then passes this case to the expert to be able to examine
whether document 4 should have the keyword ’verbal
interference’. The reason for dealing only with the direct
parent nodes is that the parents of the direct parent nodes
had been observed when the direct parent nodes were
added.

As the system evolves, new terms are being added. As a
consequence, there is a need to handle synonyms or to
group relevant terms together to facilitate the user’s query.
For this reason, we support a tool for experts to build a
thesaurus for the domain as required.

Another mechanism is used when the system can not find
an appropriate node in the lattice with a query. In this case,
the system sends a log file to an expert so s/he can decide if
more appropriate keywords are required for documents. If
necessary the expert sends e-mail to the author (annotator
of the document) giving the hyperlink to the node with the
documents that may need changes. All interactions between
the system and users are also logged for future of
evaluation.

IMPLEMENTATION
A prototype has been implemented (http://pokey.cse.unsw.
edu.au/servlets/Search) and demonstrated with a test
domain of around 200 papers from the Banff Knowledge
Acquisition Workshops. Another test domain (http://pokey
.cse.unsw.edu.au/servlets/RI) is for research topics in the
School of Computer Science and Engineering, UNSW.
There are around 150 research staff and students in the
School who generally have homepages indicating their
research projects. The aim here was to allow staff and
students to freely annotate their pages so that they would be
found appropriately within the evolving lattice of research
topics. The goal is a system to assist prospective students
and potential collaborators in finding research relevant to
their interests.

As already mentioned, a browsing scheme of our approach
and its implementation has been introduced in the papers
[16, 17]. The focus here is the knowledge acquisition
mechanisms for incremental development as browsing
evolves. The mechanisms described in the previous section
have been implemented and are described here with
reference to the domain of research topics and researchers’
homepages. In this domain, a document corresponds to a
homepage and a set of keywords is a set of research topics.
A researcher can annotate his/her own homepage with a set
of research topics by selecting among the displayed topics

Figure 3. A partial screen of annotating a homepage.

Figure 4. A partial screen displaying possibly relevant
topics for the case being annotated.

or by specifying new topics through the interface shown in
Figure 3. The system displays all the topics used by other
researchers.

Topics are initially selected by clicking the checkbox, or
entering a new topic. Then, the weight for related topics is
calculated and a shorter list of these related topics is
presented shown in Figure 4. Again the user simply clicks
the check box located in the front of each topic. At this
stage the user can view the ordered set of documents and a
sub-lattice constructed of relevant documents by clicking a
hyperlink on this screen. The user can also view the
documents for each of the related topics as well as the
existing lattice structure. Through these processes, the user
may find other relevant topics s/he has missed from the
initial long list presented.

When the above stage is complete the document
(homepage) is located at a node in a lattice. If there is
another document(s) already at the node, the user is
presented with the previous document(s) and given the
opportunity to include topics that distinguish the
documents. The user should select at least one different
feature (topic) to distinguish the previous document(s) from

Figure 5. An example of differentiating two cases.

Figure 6. An example of cases and topics related to the
new case.

the new case. A further document may be prompted by the
new added topics and the process can be continued. Figure
5 shows an example of this stage.

Next, when a new term is entered for a new document; this
term may also appropriately apply to other documents
already in this system. The expert considers whether any
document at the parent nodes for the new node should also
have the term added. However, may be too costly to go
through every case where the terms of the new case apply.
Figure 6 shows an example of this stage.

Another mechanism is motivated from when the system can
not find a node in the lattice with a query. In this case, the
system sends a log file to an expert so s/he can decide if
more appropriate keywords are required for the documents.
If the expert makes a decision for the case(s), the system
creates e-mail automatically and sends it to the author
(annotator of the document) by attaching a hyperlink which
can facilitate the refinement of the keywords of the
document if desired.

We have not presented an example of keeping a log file
referring this to the expert as this is straight forward. Nor
have we included an ontology example as this is beyond.

An end-user searching for a research area of researcher can
specify a query by entering any textwords in a conventional
information retrieval fashion or by selecting a term among
those already used for annotating documents. A set of
words can be entered separated by commas (′,′) assuming
the AND Boolean operator. When a query is entered,
stopwords are first eliminated and the remaining query
stemmed using the stemming classes. Next, the system tries
to identify the most relevant portion in the lattice for the
query and moves to this node displaying only the direct
neighbours of the node. The user can start navigation from
the node. If the system cannot find a node in the lattice
with the query, documents (researchers’ homepages) will be
retrieved which contain these textwords and system
formulates a sub-lattice using the results and their research
topics. Navigation can be done on this sub-lattice, or the
user can move to a view of the whole lattice. In this
situation, the system sends a log file to an expert so s/he
can decide if more appropriate research topics should be
included for the documents.

The user can also narrow the results using the multi-valued
attributes. We build a concept lattice using the result
documents (homepages) with their topics as an outer
structure and scale up with other attributes into a nested
structure. The nested structure is constructed dynamically
and associated with the current concept of the outer
structure. That is, the nested attribute values are extracted
from the result documents. The interface is implemented
using a pop-up menu rather than a line diagram. If the user
clicks on one of the menu items, the results will be changed
according to the selection. The user can navigate
recursively among the nested attributes. The user can also
group Boolean attributes in the one-valued contexts (here a
set of topics) by building ad-hoc taxonomies. The nested
attributes associated with the user’s query are built from
these taxonomies. Once again the detailed implementation
of these browsing mechanisms and interfaces can be found
in the papers [16, 17].

DISCUSSION
Having completed a prototype implementation of the
approach, it seems clear that it facilitates browsing and that
users adding documents enjoy seeing how their document
fits into the lattice and are motivated to make sure it is
appropriately positioned. A more substantial evaluation is
being undertaken based on logging the activity of both
users searching for research topics and researchers
changing the annotation of their home pages.

FCA is widely used for knowledge acquisition to discover
concepts and rules related to objects and their attributes. Its
advantage comes from the way it shows how the presence
or absence of attributes distinguishes objects in the various
super-concept sub-concept relations. In common with most
KA techniques, its power is in the way it presents

relationships across the whole domain, and as noted above
most FCA work attempts to display the whole lattice. This
contrasts with Ripple-Down Rules (RDR), which is based
on the idea that experts should only be required to
distinguish between cases (or documents) in a specific
context [7]. Both FCA and RDR are related to the
Repertory Grid approach [10] where the expert is asked to
gradually build up axes of differentiation (constructs)
between objects. This is motivated by considering specific
objects or cases, but as the knowledge base develops a view
of the overall relationships becomes more important.

The key extension to FCA that we have implemented is
similar to both RDR and Repertory grids. The system
retrieves other existing documents that are annotated with
the same terms as the new document being added and
suggests that the expert may wish to distinguish these
documents. The second key extension to FCA is that when
documents are added, other keywords are suggested that are
co-occur with the keywords that user has selected,
elsewhere in the system.

The further major extension we propose is in the area of
ontologies: either constructed by an expert for this
particular system, or an ontology imported from elsewhere.
First consider a simple taxonomy. The only browsing
mechanism we propose is FCA so there is little point in
considering inheritance mechanisms as part of a reasoning
mechanism. Rather inheritance is a question for knowledge
acquisition. When a new document is added and the user
enters a term that occurs in the taxonomy all parents of the
term up the hierarchy are also displayed. Any of these
terms can be selected by the user and added to the
document as terms. That is, the various superclasses are
considered as Boolean attributes. The user is free to select
none, one or some of these terms to add to the document.
There may be multiple taxonomies available. The user is
free to select any combination of superclass terms to be
added to the case.

There are good reasons for having taxonomies, but the
initial motivation for developing mechanisms for
combining both inheritance and heuristic reasoning was
probably to avoid a user having to enter the entire
taxonomy. E.g. if the user had already entered “dog” it was
inappropriate to ask them to enter “mammal’ and “animal’
as well to allow the appropriate rules could fire. Here
however we are not asking the user browsing the system to
enter such terms, but the user or expert who is entering a
document. Secondly, the hierarchy is used to suggest which
terms may be relevant.

We further anticipate that more complex ontologies can be
handled similarly. A simple example illustrates the point.
The (KA)2 ontology has the attribute “author” which may
have one or more values. The Boolean attribute
“has_author” can be added as a term, as well as the names
of individual authors. FCA will handle this perfectly
adequately. This also means that missing values will be
handled unambiguously. It should be noted that we are not

at all suggesting that rich ontological structures and
reasoning mechanisms are not of great value. However, in
the context of constructing browsing systems for an
individual’s documents or documents in a specialized
domain or relating to a small community, the value of an
ontology is in suggesting to the expert annotating a
document what terms might be suitable. We recognise that
there will be significant issues in importing ontologies, as
the expert will need to be presented with a simple point and
click selection of terms or a series of text boxes to be
(optionally) filled. The expert entering documents will not
want to deal with understanding notions of attributes,
values, constraints, cardinality etc and how these are all
reduced to Boolean attributes.

Our final proposal is the converse of the above. We
propose that the user should be allowed to group Boolean
attributes and also to build a hierarchy of groups of
groupings. The groupings would be named. This would
allow a hierarchical representation of an 'ontology'
similarly to how a browsing ontology is presented in (KA)2.
(At present we are using nested pull-down menus). These
'ontologies' would be constructed on the fly, but stored for
future use if required. A user would be free to select any
one of these ontologies to interact with the system, and use
this interaction to move to a particular sub-lattice. In this
area it may be possible to use some form of machine
learning to select likely candidate nodes from grouping
together, but we have not investigated how this may be
done at this stage.

CONCLUSION
We have presented an overview of how Formal Concept
Analysis may be used for document retrieval and outlined
the system we have implemented. The main differences
between the system we have implemented and previous
work in this area is an emphasis on incremental
development and evolution and tools to support this. The
Web implementation we have used also provides a fairly
natural environment for document management. From our
experience so far with this development it is clear to us that
Formal Concept Analysis is a useful way of supporting the
flexible open management of documents required by
individuals, small communities or in specialised domains.

We have also outlined how other ontologies might be used
with the system. We see existing ontologies as useful
resources to assist the user in adding documents, but that
the user should not be constrained and should be able to
pick and choose selections from multiple ontologies. We
also see that ontologies to assist a user in accessing the
system should be ad-hoc, able to be constructed on the fly
but also that the user should be allowed to select from past
ontologies that users have constructed.

ACKNOWLEDGMENTS
The authors would like to thank Bao Vo and Dr. Rex B.H.
Kwok for helping in formalising of mathematical formulas
used in definitions. This research is supported by an
Australian Research Council (ARC) grant.

REFERENCES
1. Aussenac-Gilles, N., Biebow B., Szulman S. Revisiting

Ontology Design: A Methodology Based on Corpus
Analysis, 12th European Conference on Knowledge
Acquisition and Knowledge Management (EKAW 2000),
Springer, 172-188, 2000.

2. Benjamins, V. R., Fensel, D., Decker, S. and Perez, A.
G. (KA)²: building ontologies for the Internet: a mid-
term report. International journal of human computer
studies, Vol. 51, No. 3, 687-712, 1999.

3. Carpineto, C. and Romano, G. ULYSSES: A Lattice-
based Multiple Interaction Strategy Retrieval Interface,
In Blumenthal et al., Human-Computer Interaction,
Springer Verlag, 1995.

4. Carpineto, C. and Romano, G. A Lattice Conceptual
Clustering System and Its Application to Browsing
Retrieval. Machine Learning, 24(2), 95-122, 1996.

5. Cole, R. and Eklund, P. Application of Formal Concept
Analysis to Information Retrieval using a Hierarchically
Structured Thesaurus. International Conference on
Conceptual Graphs, ICCS ’96, University of New South
Wales, Sydney, 1-12, 1996.

6. Cole, R. and Stumme, G. CEM - A Conceptual Email
Manager, Proceedings of the 8th International
Conference on Conceptual Structure (ICCS 2000),
Darmstadt, Springer, 438-452, 2000.

7. Compton, P. and Jansen, R. A Philosophical Basis for
Knowledge Acquisition. Knowledge Acquisition 2:242-
257, 1990.

8. Eklund, P., Groh, B., Stumme, G. and Wille, R. A
Contextual-Logic Extension of TOSCANA,
Proceedings of the 8th International Conference on
Conceptual Structure (ICCS 2000), Darmstadt,
Springer, 453-467, 2000.

9. Furnas, G. W., Landauer, T. K., Gomez, L. M. and
Dumais, S. T. Statistical semantics: analysis of the
potential performance of key-word information systems,
Bell System Technical Journal, 62, 1753-1806, 1983.

10. Gaines, B. and Shaw, M. Cognitive and Logical
Foundation of Knowledge Acquisition. The 5th

Knowledge Acquisition for Knowledge Based Systems
Workshop, Banff, 9.1-9.25, 1990.

11. Ganter, B. and Wille, R. Conceptual Scaling, In: F.
Roberts (ed.): Application of Combinatorics and Graph
Theory to the Biological and Social Sciences, Springer,
139-167, 1989.

12. Ganter, B. and Wille, R. Formal Concept Analysis:
mathematical foundations. Springer, Heidelberg, 1999.

13. Godin, R., Missaoui, R. and April, A. Experimental
comparison of navigation in a Galois lattice with
conventional information retrieval methods.
International Journal of Man-Machine Studies, 38, 747-

767, 1993.
14. Kang, B. H., Yoshida, K., Motoda, H. and Compton, P.

Help Desk System with Intelligent Interface, Applied
Artificial Intelligence, 11: 611-631, 1997.

15. Kim, M., Compton, P. and Kang, B. H. Incremental
Development of a Web Based Help Desk System,
Proceedings of the 4th Australian Knowledge
Acquisition Workshop (AKAW99), University of NSW,
Sydney, 13-29, 1999.

16. Kim M. and Compton, P. Developing a domain-specific
Information Retrieval Mechanism. Proceedings of the
6th Pacific Knowledge Acquisition Workshop (PKAW
2000), Eds. P. Compton; A. Hoffmann; H. Motoda;
T.Yamaguchi, Sydney Australia, 189-206, 2000.

17. Kim M. and Compton, P. A Web-based Browsing
Mechanism Based on the Conceptual Structures,
Conceptual Structures: Extracting and Representing
Semantics, Proceedings of the 9th International
Conference on Conceptual Structures (ICCS’01),
Stanford University, California, USA, 47-60, 2001.

18. Maedche A., Staab S. Mining Ontologies from Text,
12th European Conference on Knowledge Acquisition
and Knowledge Management (EKAW 2000), Springer,
189-202, 2000.

19. Marchionini, G. and Shneiderman, B. Finding facts vs.
browsing knowledge in hypertext systems, IEEE
Computer, 21, 70-80, 1988.

20. Priss, U. Faceted Information Representation, In:
Stumme, Gerd (ed.), Working with Conceptual
Structures. Proceedings of the 8th International
Conference on Conceptual Structures, Shaker Verlag,
Aachen, 84-94, 2000.

21. Richards, D. and Compton, P. Knowledge acquisition
first, modelling later, Knowledge Acquisition, Modeling
and Management, E. Plaza and R. Benjamins, Berlin,
Springer: 237-252, 1997.

22. Rock, T. and Wille, R. Ein TOSCANA-System zur
Literatursuche, In: G. Stumme and R. Wille (Hrsg.):
Begriffliche Wissensverarbeitung: Methoden und
Anwendungen, Springer, Berlin-Heidelberg, 239-253,
1999.

23. Stumme, G. Hierarchies of Conceptual Scales. 12th

Banff Knowledge Acquisition, Modelling and
Management, Eds. B Gaines; R Kremer; M Musen,
Banff Canada, 16-21 Oct., SRDG Publication,
University of Calgary, 1999.

24. Wille, R. Restructuring lattice theory: an approach
based on hierarchies of concepts. In: Ivan Rival (ed.),
Ordered sets, Reidel, Dordrecht-Boston, 445-470, 1982.

25. Wille, R. Concept lattices and conceptual knowledge
systems. Computers and Mathematics with
Applications, 23, 493-515, 1992.

