Automatic User Support for Business Process Modeling

Stefanie Betz, Stefan Klink, Agnes Koschmider, Andreas Oberweis

Institute AIFB, Universität Karlsruhe (TH), Germany

Workshop "Semantics for Business Process Management"

Outline

- 1. Motivation
- 2. Foundations
- 3. Measuring Similarity between Process Elements
- 4. Analysis Methods for Petri nets
- 5. Conclusion and Outlook

Motivation - Application scenario

autocompletion of process models:

- process element names might differ in syntax or one process can be modeled in different ways even when utilizing the same modeling language

→ how to solve ambiguity issues?

- typos and structural modeling errors make it particularly error prone to model processes manually
- → which are appropriate subsequent elements? (find and proposition)

Motivation

SBPM'06, Budva

Semantic Business Process Models

- missing semantic description of Petri net components hampers automated processing
- to uncover synonyms or homonyms of process element names a description of Petri nets in an unambiguous format is required (i.e. Web Ontology Language OWL)
- machine readable and interpretable format, which might be used for ontological reasoning
- → Semantic Business Process Models (SBPM)

Semantic Business Process Models

Combination of process modeling methods with semantic technologies

two semantic business process models

<petri:Place rdf:ID="request"> <petri:transRef rdf:resource="#check request"/> </petri:Place> <petri:Transition rdf:ID="send rejection"> <petri:placeRef> <petri:Place rdf:ID="rejection"> <petri:hasMarking> <petri:IndividualDataItem rdf:ID="R_rejection"> <petri:hasAttribute rdf:resource="#Destination"/> <petri:hasAttribute rdf:resource="#Quantity"/> <petri:hasAttribute rdf:resource="#Name"/> </petri:IndividualDataItem> </petri:hasMarking> </petri:Place> </petri:placeRef> </petri:Transition> <petri:Transition rdf:ID="send confirmation"> <petri:placeRef> <petri:Place rdf:ID="confirmation"> </petri:Place> </petri:placeRef> </petri:Transition>

<petri:Place rdf:ID="request"> <petri:hasMarking rdf:resource="#R request"/> <petri:transRef rdf:resource="#reject"/> <petri:transRef rdf:resource="#accept"/> </petri:Place> <petri:Transition rdf:ID="reject"> <petri:placeRef> <petri:Place rdf:ID="rejection"> <petri:hasMarking> <petri:IndividualDataItem rdf:ID="R rejection"> <petri:hasAttribute rdf:resource="#Name"/> <petri:hasAttribute rdf:resource="#City"/> <petri:hasAttribute rdf:resource="#Date"/> </petri:IndividualDataItem> </petri:hasMarking> <petri:transRef rdf:resource="#contact customer"/> </petri:Place> </petri:placeRef> </petri:Transition> <petri:Transition rdf:about="send verification"> <petri:placeRef> <petri:Place rdf:about="verification"> </petri:Transition>

Automatic User Support for Business Process Modeling

Outline

1. Motivation

- 2. Foundations
- ⇒ 3. Measuring Similarity between Process Elements
 - 4. Analysis Methods for Petri nets
 - 5. Conclusion and Outlook

AIFB O

Measuring Similarity between Process Elements

Input:

- two semantic business process models
- background ontology:

Measuring Similarity between Process Elements

Similarity Computation

- syntactical similarity: how many changes are required to transform one string into the other one

- linguistic similarity: via a background ontology

- structural similiarity: considering context of process model elements

Measuring Similarity between Process Elements

Output

combined similarity results

name	sim _{com}	sim _{syn}	sim _{ling}	sim _{strp}	sim _{str_{At}}	sim _{strv}	sim _{str_T}
#confirmation	0.8	0.64	0.5	0.95	0.0	0.0	1.0
#verification	0.8	0.64	0.5	0.95	0.0	0.0	1.0

Outline

- 1. Motivation
- 2. Foundations
- 3. Measuring Similarity between Process Elements
- ➡ 4. Analysis Methods for Petri nets
 - 5. Conclusion and Outlook

Analysis Methods for Petri nets

 proposed process fragments should not cause deadlocks and synchronization errors

→ free of structural errors if the reduction results in an empty graph

Automatic User Support for Business Process Modeling

SBPM'06, Budva

AIFB

Analysis Methods for Petri nets

→ two nodes left over, thus the modeled process is not free of deadlocks

SBPM'06, Budva

AIFB O

Conclusion

- Assisting users in process models modeling to improve • the reusability of business processes
- Similarity measurement to solve ambiguity issues • caused by the use of different names for describing the same tasks
- Recommendation system validates process properties of ۲ the automatically completed process to avoid deadlocks and synchronization errors.

AIFB

Outlook

• Use of machine learning techniques

Neural Nets: learn a threshold for combined similarity – instead of using a threshold with fixed value

Information Filtering: generate and compare user-profiles, which help to categorize users

Content-based Information Filtering: combined similarity of process template elements can be used to rank the recommendations

Implementation

AIFB 🖸

http://aifbserver.aifb.uni-karlsruhe.de/sempet/index.htm

