Modeling Web Services with URML

Adrian Giurca!, Sergey Lukichev!, and Gerd Wagner!

Institute of Informatics, Brandenburg University of Technology at Cottbus
{Giurca, Lukichev, G.Wagner}@tu-cottbus.de

Abstract. A Web service can be specified on the basis of a business vo-
cabulary, including a business event model, and of a rule-based behavior
model. We use the general rule language R2ML and the UML-based rule
modeling language URML for modeling the behavior of Semantic Web
services.

1 Introduction

A Web Service is a software application identified by a URI, whose interfaces
and bindings are capable of being described in XML, e.g. by means of the Web
Service Description Language (WSDL)[9] and which can directly interact with
other software agents using XML-based messages (represented in the SOAP
format [4]) exchanged via Internet protocols (HTTP or SMTP).

In this paper we discuss the modeling of Web Services with the help of the
UML-Based Rule Modeling Language (URML)[6] developed by the REWERSE
Working Group I1' for the semantic business process management on the Web.
In order to support rule interchange between different rule engines, we have
developed a general rule language, called R2ML ([10], [11]), with an XML seri-
alization format. The metamodels of URML and R2ML largely overlap. URML
can be considered as a language that is derived from R2ML in order to provide
UML-based rule modeling.

We envision the following business process modeling scenario:

— A business process modeler models Web services based on a vocabulary and
rules with a rule modeling tool, f.e. Strelka ([3]);

— The entire Web service specification can be serialized using WSDL and the
rule description language R2ML.

A rule-based Web service may be implemented using a reaction rule engine
and a SOAP listener. The rule engine receives SOAP messages, executes trig-
gered rules and performs actions. The SOAP listener is a Web application, which
captures SOAP messages via HT'TP(S) and passes them to the rule engine.

In Section 2 we describe R2ML reaction rules, in Section 3 we describe the
R2ML event metamodel with the focus on atomic events, represented by SOAP
messages, in Section 4 we describe R2ML actions, and in Section 5 we give an
example of a reaction rule, modeled with URML and serialized into R2ML. In
Section 6 we give an outline of the future work and conclusions.

! Working Group Il http://www.rewerse.net/I1

2 Reaction Rules

The main goal of R2ML is to provide a representation of rules, targeted to the
rule engine platform that is independent of a vendor specific engine (PIM Level).
This allows R2ML to be a rule interchange language between different PSM level
specific rule engines. This section presents R2ML reaction rules also known as
Event-Condition-Action rules (ECA rules) and their usage in describing business
process modeling.

There are several advantages of using REACTION rules for specifying busi-
ness processes: business requirements are often captured in the form of rules in a
natural language, formulated by business people; REACTION rules are easier to
maintain and integrate with other kinds of rules, used in business applications
(integrity rules, which specify constraints the data must fulfill, derivation rules,
which explain how a model element can be derived); the topic of rules validation
and verification is well-studied; REACTION rules emphasis on events gives a
flexible way to specify control flow.

The R2ML metamodel for reaction rules is depicted in Figure 1.

conditions 0.1

o

* postcondition
1 OR} producedAction
triggeringEvent 1

Fig. 1. Reaction rule metamodel

A reaction rule is a statement of programming logic that specifies the execu-
tion of one or more actions in the case of a triggering event occurrence and if rule
conditions are satisfied. Optionally, after the action execution post-conditions
may be made true.

Reaction rules therefore have an operational semantics (formalizing state
changes, e.g., on the basis of a state transition system formalism).

A reaction rule has the following components:

— triggeringEvent is an R2ML EventExpression, which is either atomic or
composite (Figure 2);

— conditions are represented as a collection of quantifier free logical formulas;

— producedAction is an R2ML action, which represents the state change of
the system. The latest version of R2ML defines composite actions, which
are, for instance, sequential actions and parallel actions.

— an optional postcondition specifies a state change in a declarative manner.

All components of a reaction rule contain expressions that refer to rule vari-
ables. The R2ML distinguishes between object variables, which are instantiated

with objects, and data variables, which are instantiated with data values. The
rule variables are bound to specified classes/datatypes. An object variable in
R2ML can be bound to a specific class either using an ObjectClassificationAtom
or the optional attribute classID of the variable. Similarly, a data variable can be
bound using a DataClassificationAtom or the optional attribute datatypeID
of the variable.

3 R2ML Events Metamodel

The R2ML Events metamodel (see Figure 2) specifies the core concepts, which
are necessary for dynamic behavior of rules and provides the infrastructure for
the support of more detailed behavior definition.

2.
{ordered}

EventExpression

startDateTime : xs:dateTime 1.
duration : xs:duration
/occurDateTime : xs:dateTime = startDateTime + duration

2
{ordered}

- EventType
— eventTypelD : URIRef
timeWndow : xs:duration 10 -,
e
ParallelEventExpression

SequenceEventExpression «invariant»
7 JtimeWindow : xs:duration {duration=0}
timeWindow : xs:duration

Ti |
— lactor : URIRef -
«invariant»
{sender=actor}
SingularTimeEventExpr -

dateTime : xs:dateTime MessageEventExpr{ —
/sender : URIRef
receiver : URIRef SOAPMessageEventExpr
PeriodicTimeEventExpr

{complete}

ChoiceEventExpression

7

minOccurs : xs:nonNegativelnteger = 1
arguments maxOccurs : xs:nonNegativelnteger
timeWindow : xs:duration

Fig. 2. R2ML Event Expressions

The basic properties of an R2ML event expression are:

— startDateTime is an event start date and time;

— duration is a value specification that specifies the temporal distance between
two time expressions, which define time instants;

— occurDateTime is a derived property, which is given by the addition of du-
ration to the existent start date time.

All R2ML Events are subclasses of EventExpression. EventExpression is ei-
ther a composite event or an atomic event.

3.1 Composite event

Composite event in R2ML is either an AndNotEventExpression, a SequenceEven-

tExpression, a ParallelEventExpression and a ChoiceEventExpression. Each event
expression has a property timeWindow, which represents the duration of the cor-

responding event observation. The event expression metamodel is depicted in

Figure 2.

AndNotEventEzpression has two event expressions as arguments (EvtExpri
and EvtExpr2). It describes a complex event where an instance of EvtExprl but
no instance of EvtExpr2 occurs.

Sequence EventFExpression refers to an ordered list of event expressions, which
are processed in a sequence of events, following the existent order and consider-
ing a finite value of timeWindow observation.

ParallelEventExpression refers to a collection of events that are concurrently
processed inside of the corresponding timeWindow.

ChoiceEventEzpression refers to a collection of events that requires process-
ing of at least one event expression from the collection inside of the corresponding
timeWindow.

3.2 Atomic event

Atomic event in R2ML is an AtomicFEventFExpression, which main characteristic
is that it has no duration (duration = 0). As a consequence, the occurrence
date time is the same as the start date time.

An atomic event expression:

— Refers to an EventType, which is its classifier;
— Is composed from an ordered, possible empty, list of terms as arguments.

The R2ML distinguishes between two main classes of atomic events:
MessageEventExpression and TimeEventExpression.

Message event expression has a property sender. In the discussing approach
for business process modeling in web services, a sender may be HI'TP_REFERER.
One category of message event is a SOAP message event.

SOAP Messages Events. SOAP is a lightweight protocol intended for ex-
changing structured information in a decentralized, distributed environment. It
uses XML technologies to define an extensible messaging framework providing
a message construct that can be exchanged over a variety of underlying pro-
tocols. The framework has been designed to be independent of any particular
programming model and other implementation specific semantics[4].

We use SOAP messages as transport containers for events, which are ex-
pressed in R2ML as SOAPMessageEventExpr’s (see Figure 3). SOAP is typically
used for Remote Procedure Calls (RPC). The SOAP specification[4] defines two
special message formats: a SOAP RPC Request Message, represented in R2ML
by SOAP-RPC-RequestMsgEvtExpr and a SOAP RPC Response Message, repre-
sented in R2ML by SOAP-RPC-ResponseMsgEvtExpr.

The following example shows a sample SOAP message, which contains an
R2ML SOAP RPC request. The message contains two pieces of application-
defined data not defined by the SOAP specification: a SOAP header block and a
body element with a local name of ref. In general, SOAP header blocks contain
information which might be of use to SOAP intermediaries as well as the ultimate
destination of the message.

«invariant»
{eventTypelD = "SOAP-RPC-RequestMsg"
and body.children.encodingSytle
|SOAP-RPC-RequestMngvtExpr F— ~ 7] = "http://www.w3.0rg/2003/05/soap-encoding"}
header
| SOAP-RPC-ResponseMsgEVtExpr l——D' SOAPMessageEventExpr SOAPMessageHeader
T
\ 0.1
«invariant» * headerBlock
{eventTypelD='"SOAP-RPC-RequestMsg' 1 body eaderblocks
and body.children.encodingSytle
= "http://www.w3.0rg/2003/05/soap-encoding"} SOAPMessageBody SOAPMessageHeaderBlock
:;l namespaceName[1] : URIRef
localName[1] : UnicodeString
SOAP-ConversationaIMngvtExpr|7 * children encodingStyle[0..1] : URIRef
T mustUnderstand[0..1] : xs:boolean
\\ SOAPMessageBodyChild role[0..1] : URIRef
- - relay[0..1] : xs:boolean
«invariant» localName[1] : UnicodeString
{eventTypelD="SOAP-ConversationalMsg'} Zixr;?i?::gz/rl\‘ea[?i[]o:.EJ]R:IESflRef

Fig. 3. SOAP message event expression in R2ML

In this example an intermediary might prioritize the delivery of the message
based on the priority and expiration information in the SOAP header block. The
body contains the actual event payload, in this case the customer’s request for
a car .

Ezample 1 (SOAP RPC Request).

<?xml version=’1.0’ 7>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<r2ml:SOAP-RPC-RequestMsgEvtExpr xmlns:rew="http://www.rewerse.net/I1/R2ML"
r2ml : sender="eshop.com"
r2ml:startTime="2006-03-21T09:00:00"
r2ml :duration="POYOMODTOHOMOS"
r2ml :eventTypeID="productOrder">
1 <r2ml:arguments>

2 <r2ml:0bjectVariable r2ml:name="car" r2ml:classID="srv:Car"/>
3 </r2ml:arguments>
4 </r2ml:SOAP-RPC-RequestMsgEvtExpr>

</env:Body>

</env:Envelope>

The body of the SOAP is an R2ML SOAP-RPC-RequestMsgEvtExpr. Lines 1-3
define a list of arguments for the event: the ObjectVariable in line 2 is a variable
car of type srv:Car, which is a particular car, requested by the customer.

4 Actions

The R2ML supports both production rules and reaction rules. With this respect
it defines the concept of an action. Following the OMG Production Rule Repre-
sentation submission[2], an action (Fig. 4) is either an InvokeActionExpression
or an AssignActionExpression or a CreateActionExpression or a DeleteAction-
Ezpression. The R2ML provides also message actions in the form of a concrete
SOAPMessageEventExpr.

| | T]

l Acti l l. KeActi cn;w]

B . 1 N
1 {ordered} 1
SOAPAction 1

[Operation ‘ l Term ObjectTerm

SOAPRPCAction | [operationID : URIRef value [PropertylD : URIRef :
arguments * l ObjectSlot DataSlot] contextArgument 4
1 * 1 {ordered}

Fig. 4. Actions

All actions refer to a contert which is an R2ML object term.

InvokeActionExpression models an object operation invocation. It refers to a
UML Operation and contains an ordered, possible empty list of arguments repre-
sented as R2ML terms. The execution of this action is done by the corresponding
operation-call.

Ezample 2 (InvokeActionExpression).
”Calculate the total payment of the purchase order.”

<InvokeActionExpression r2ml:operationID="totalPayment">
<contextArgument>

<ObjectVariable r2ml:name="purchaseOrder" r2ml:classID="Order"/>
</contextArgument>
</InvokeActionExpression>

In this example the operation totalPayment has no arguments.

AssignActionExpression refers to a UML Property and contains a DataTerm
as a value. This action assigns a value to a property.

Ezample 8 (AssignActionEzxpression).

”Set to 10 the property discount of the object variable purchaseOrder
(purchaseOrder.discount = 10).”

<AssignActionExpression r2ml:propertyID="discount">
<contextArgument>

<ObjectVariable r2ml:name="purchaseOrder"

r2ml:classID="0rder"/>

</contextArgument>
<value>

<TypedLiteral r2ml:lexicalValue="10"

r2ml:type="xs:positiveInteger"/>

</value>
</AssignActionExpression>

CreateAction refers to a UML Class and contains a list of slots (object slots
and/or data slots). The execution of this action consist in a constructor-call for
creation of a new object in the system.

Ezample 4 (CreateActionExpression).

”Create purchase order for one book named "Harry Potter’ with the price
11.25 and discount 10

<CreateActionExpression r2ml:classID="0Order">
<contextArgument>
<ObjectVariable r2ml:name="purchaseOrder"/>
</contextArgument>
<DataSlot r2ml:attributeID="title">
<TypedLiteral r2ml:lexicalValue="Harry Potter"
r2ml:type="xs:string"/>
</DataSlot>
<DataSlot r2ml:attributeID="price">
<TypedLiteral r2ml:lexicalValue="11.25"
r2ml:type="xs:float"/>
</DataSlot>
<DataSlot r2ml:attributeID="discount">
<TypedLiteral r2ml:lexicalValue="10"
r2ml:type="xs:positivelnteger"/>
</DataSlot>
</CreateActionExpression>

DeleteActionExpression refers to an UML Class and contains an ObjectTerm.
This action removes an instance of the Class.

Ezample 5 (DeleteActionExpression,).
Delete order puchaseOrder.

<DeleteActionExpression r2ml:classID="">
<contextArgument>
<ObjectVariable r2ml:name="purchaseOrder" r2ml:classID="Order"/>
</contextArgument>
</DeleteActionExpression>

5 Business Process Modeling Example

Let’s consider a part of a business process when a customer makes a request for
a book from a web site. The customer fires an event, which is captured by the
server. The server searches for an appropriate rule for this event and checks rule
condition: whether the requested book is available or not. If the condition holds,
i.e. the book is available, then it performs an action: approve order. The rule
postcondition is that the amount of books in stock must be less by a requested
quantity than before the rule execution. A part of the business vocabulary is
depicted on Figure 5. The rule is modeled using a URML][6].

ApproveOrder

BookRequest

quantity=x
itemID=y

Customer

1
0.1

ShoppingCart
1

Fig. 5. On customer book request, if the book is available, then approve order and
decrease amount of books in stock.

quantitylnStock=quantityInStock@pre-

-fuantity

Availableltem

quantitylnStock

The business vocabulary consists of a customer, which may have a shopping
cart. A shopping cart consists of items. An item has an itemID and quantityln-
Stock. There is an item category Awvailableltem, which contains items, available

for the order and delivery. In the URML a rule is represented as a circle with a
label "RR”. Incoming arrow from Availableltem is a rule condition. SOAP RPC
request message is represented with a UML signal sign and connects a customer,
who fires the event and a rule circle. The event contains list of parameters: itemID
and quantity. Outgoing double-head arrow to an activity ApproveOrder is an ac-
tion to approve the order. This action is defined in the WSDL interface of the ser-
vice. Outgoing double-head arrow to an Item class represents rule postcondition
with an OCL expression quantityInStock=quantityInStock@pre-quantity,

that states that the amount of items in stock must be less by 1.
In order to be processed by the ECA engine, this rule should be serialized into
rule interchange format R2ML. Corresponding R2ML syntax is the following:

<?xml version="1.0" encoding="UTF-8"7>
<r2ml:ReactionRuleSet xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rew="http://www.rewerse.net/I1/R2ML"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.rewerse.net/I1/R2ML"
r2ml:id="ID000000">
<r2ml:ReactionRule r2ml:id="rr1111" xmlns:srv="http://www.example.org/">
<r2ml:RuleText r2ml:ruleDiagram="" r2ml:textFormat="text/xml"
r2ml:ruleVocabularyDiagram=""/>
<r2ml:SourceCode r2ml:language="R2ML"/>
<dc:subject>Reaction rules, R2ML, Markup Languages</dc:subject>
<r2ml:triggeringEvent>
<r2ml:S0APMessage r2ml:sender="" r2ml:startTime="2006-03-21T09:00:00"
r2ml :duration="POYOMODTOHOMOS"
r2ml:eventTypeID="productOrder">
<r2ml:arguments>
<r2ml:0bjectVariable r2ml:name="x"
r2ml:classID="srv:Item"/>
<r2ml:DataVariable r2ml:name="quantity"
r2ml:dataTypeID="xsd:integer"/>
<r2ml:0bjectVariable r2ml:name="customrel"
r2ml:classID="srv:Customer"/>
</r2ml:arguments>
</r2ml:S0APMessage>
</r2ml:triggeringEvent>
<r2ml:conditions>
<r2ml:0bjectClassificationAtom r2ml:classID="srv:AvailableItem">
<r2ml:0bjectVariable r2ml :name="x"/>
</r2ml:0ObjectClassificationAtom>
1 <r2ml:EqualityAtom>
<r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock">
<r2ml:contextArgument>
<r2ml:0ObjectVariable r2ml:name="i" r2ml:classID="srv:Item"/>
</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>
<r2ml:DataVariable r2ml:name="q" r2ml:dataTypeID="xsd:integer"/>
</r2ml:EqualityAtom>
</r2ml:conditions>
<r2ml:producedAction>
<r2ml:SO0APRPCAction r2ml:operationID="approveOrder">
<r2ml:contextArgument>
<r2ml:0bjectVariable r2ml :name="x"/>
</r2ml:contextArgument>
<r2ml:arguments>
<r2ml:0bjectName r2ml:objectID="customerl"
r2ml:classID="srv:Customer"/>
</r2ml:arguments>
</r2ml:SO0APRPCAction>
</r2ml:producedAction>
<r2ml:postcondition>
<r2ml:EqualityAtom>
3 <r2ml:AttributeFunctionTerm r2ml:attributeID="srv:quantityInStock">

N

<r2ml:contextArgument>
<r2ml:0ObjectVariable r2ml:name="i" r2ml:classID="srv:Item"/>
</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>
4 <r2ml:DataOperationTerm r2ml:operationID="minus">
<r2ml:contextArgument>
<r2ml:0ObjectVariable r2ml:name="i" r2ml:classID="srv:Item"/>
</r2ml:contextArgument>
<r2ml:arguments>
<r2ml:DataVariable r2m1:name="q"/>
<r2ml:DataVariable r2ml:name="quantity"/>
<r2ml:arguments>
</r2ml:DataOperationTerm>
</r2ml:EqualityAtom>
</r2ml:postcondition>
</r2ml:ReactionRule>
</r2ml:ReactionRuleSet>

It is important to note, that the postcondition expression
quantityInStock=quantityInStock@pre-quantity is represented as combina-
tion of 2 atoms: equality atom in the condition part of a rule (line 1), which
is considered as a variable q initialization with initial value of the attribute
quantityInStock and equality atom in the postcondition part of the rule (line
2), which is considered as an assignment of a new value for the attribute
quantityInStock. The new value is specified by the DataOperationTerm (line
4) with ”minus” operation on old attribute value q and quantity quantity. For
more rule examples in URML and R2ML we refer to the Working Group I1 web
site and, in particular, to the EU-Rent case study?, which contains a domain
model and rules, modeled using URML and to the R2ML example rule set?.

The transformation of URML model into R2ML is implemented in the Strelka
tool. Metamodels of R2ML and URML largely overlap and URML concepts like
rule, condition and conclusion can be directly mapped into R2ML. So called
OCL filter expressions, used in URML conditions and postconditions to filter in-
stances of a conditioned classifier (f.e. class or association), can be represented in
the R2ML since it has corresponding functional atoms for representing OCL ex-
pressions. Since R2ML does not support collections yet, not all OCL expressions
can be serialized into R2ML.

6 Conclusion

In this paper we have shown how a UML-Based Rule Modeling Language can
be used for the modeling of Web Services, based on reaction rules. We have
also presented a part of the R2ML language, related to reaction rules and gave
examples of rule modeling in XML syntax of R2ML.

Concerning the future work on this topic we consider the following issues:

2 EU-Rent Case Study in URML, using Strelka tool: http://oxygen.informatik.
tu-cottbus.de/rewerse-il/?q=node/12

3 R2ML project page: http://oxygen.informatik.tu-cottbus.de/rewerse-i1l/?q=
node/6

— Give a focus on rule sets and respective control flow modeling in URML.

Control flow modeling by means of reaction rules has been already introduced
in [5] and we are going to adopt it in URML;

— Analyze the suitability of R2ML for expressing control flow patters, identi-

fied, for instance, by Van der Aslst et al. [7]. Control flow patterns represen-
tation by means of reaction rules has been specified in [8] and we have to
investigate how they can be captured in reactive rules part of R2ML;

— R2ML needs a mechanism to specify exceptions.
— The issue of web service composition is currently under consideration.

References

10.

11.

Gelfond, M., Lifschitz, V., The stable model semantics for logic programming, In
Proc. of ICLP-88, pp. 1070-1080.

W3C Workgroup on RIF Charter, http://www.w3.0org/2005/rules/wg/charter
Strelka - A UML-Based Visual Rule Modeling Tool. http://oxygen.informatik.
tu-cottbus.de/rewerse-il/?q=node/10

SOAP Version 1.2 Part 1: Messaging Framework W3C Recommendation 24 June
2003, http://www.w3.org/TR/soapl2-partl/

Wagner G., The Agent-Object-Relationship Meta-Model: Towards a Unified View
of State and Behavior. Information Systems 28:5 (2003), pp. 475-504.

A UML-Based Rule Modeling Language (URML) on REWERSE Working Group
I1 website: http://oxygen.informatik.tu-cottbus.de/rewerse-il/?q=node/7
van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003)

Taveter, K.: A multi-perspective methodology for agent-oriented business mod-
elling and simulation. PhD thesis, Tallinn University of Technology, Estonia, 2004
(ISBN 9985-59-439-8)

Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
W3C Candidate Recommendation 27 March 2006 http://www.w3.org/TR/wsd120
G. Wagner, A.Giurca, S. Lukichev (2005). R2ML: A General Approach for Marking
up Rules, Dagstuhl Seminar Proceedings 05371, in F. Bry, F. Fages, M. Marchiori,
H. Ohlbach (Eds.) Principles and Practices of Semantic Web Reasoning, http:
//drops.dagstuhl.de/opus/volltexte/2006/479/

Wagner, G., Giurca, A., Lukichev, S. (2006). A Usable Interchange Format for Rich
Syntax Rules. Integrating OCL, RuleML and SWRL. Will appear in proceedings
of Reasoning on the Web Workshop at WWW2006, May 2006

