
Expressing Semantic Web Service Behavior
using Description Logics?

Markus Fronk and Jens Lemcke

SAP Research, Karlsruhe, Germany
{markus.fronk, jens.lemcke}@sap.com

Abstract. For the automation of major tasks of the traditional Web service (WS)
usage, semantic Web services research has identified the need for (1) the pro-
vision of additional aspects of Web services, as well as (2) the formalization of
these descriptions. This work focuses on the behavioral aspects of Web services
and proposes to use Description Logics (DL) for their formalization. We provide
DL constructs for describing interactions in sequences and parallel splits. This
yields several advantages for the tasks of WS retrieval and composition. (1) The
development of the retrieval and composition software becomes simplified which
therefore results in more robust code. (2) The Web service description can be
extended by additional features without touching the evaluating code. (3) In com-
bination with the ontology language OWL-DL, the Web service description can
directly be integrated with existing semantic Web efforts, e. g. domain ontologies.

1 Introduction

In today’s industries, coping with a growing number of software artifacts in a flexi-
ble and efficient manner becomes a more and more important issue. In addition, faster
changes of market situations force companies to be able to quickly adopt their business
processes and set up interoperations with other parties.

Service-oriented technology arose to address some of the challenges posed by this
development. Using the Web Service Description Language (WSDL)1 in conjunction
with the Simple Object Access Protocol (SOAP)2 and the “Universal Description, Dis-
covery and Integration” (UDDI),3 software components can be accessed through and
communicate via standardized interfaces and protocols. This increases the flexibility of
the companies, but every task of the Web Service (WS) usage process still remains a
manual integration activity.

The aim of Semantic Web Services (SWS) research is to automate major tasks of
this usage process. These are discovery, selection, composition, execution and moni-
toring. Major contributions in this area are OWL-S4 and the Web Service Modeling
? This material is based upon work partially supported by the EU funding under the project

DIP (FP6 - 507483). This paper reflects the author’s views and the Community is not liable
for any use that may be made of the information contained therein.

1 http://www.w3.org/TR/wsdl, also: “Web Service Definition Language”
2 http://www.w3.org/TR/soap12-part0/
3 http://www.uddi.org/
4 http://www.daml.org/services/owl-s/1.1/overview/



2 Markus Fronk and Jens Lemcke

Ontology (WSMO [1]). In contrast to traditional Web service descriptions, Web ser-
vice automation requires (1) some more information to be specified, and (2) a formal
representation of all information given to facilitate their automatic processing.

In current approaches for Semantic Web service description, languages bearing a
formal semantics are being used to add further information to “traditional” service de-
scriptions. However, the capabilities of formalism are only used for defining the Web
service description languages itself, rather than exploiting them to draw conclusions
over the semantic of descriptions. For each task of the Web service usage process, spe-
cialized software is needed to work with the respective part of the formalized Web
service description. This result in additional algorithms that have to be developed to in-
terpretate the semantics described. In addition, different SWS approaches using differ-
ent description formalisms can not easily be intergated. We therefore require a semantic
Web service description whose formal capabilities can be further exploited. This means,
that given Web service descriptions, standard software should be able to draw conclu-
sions about which services are close to the evaluations needed to be performed during
the tasks of the Web service usage process. This facilitates the separation of the model
of aspects of the Web service from its interpreting application. Since we then can rely
on standard reasoning software to realize standard parts, the robustness of software im-
proves.

Further requirements for a general Semantic Web service description are its ability
to be extendable for later enhancements and integrable with other aspects of Web ser-
vice descriptions whose modelings were independently developed from each other. As
an example, the “business semantics” aspect is one of these aspects which could be ex-
pressed in Description Logics (DL [2]) [3]. Other efforts are concerned with modeling
Web service policies using DL [4]. Since these different aspects developed indepen-
dently from each other adhere to the same formal semantics (the way inferences are
drawn), they can potentially be integrated in a single analysis module considering all
aspects as a whole.

In this paper, we propose to use Description Logics for the representation of Web
service descriptions. A semantic Web service description consisting of a (1) technical,
(2) behavioral and (3) contextual part provides enough information for the automation
of the major WS usage tasks as named above. The common feature of all these tasks is
finding matching service descriptions to a request description. We therefore design our
Web service descriptions in such a way that through the standard subsumption reasoning
this common task can be accomplished. For the implementation, we can therefore rely
on complete and correct reasoner implementations.

Although all of the three aspects of semantic Web service descriptions should be
expressed using DL, this paper focuses for demonstration on the behavioral aspect, i. e.
the constraints between a service’s operations that define the allowed order of execution.
We choose DL, because it comes with a formal semantics, brings sufficient expressivity
for our purposes, and is decidable. By using OWL-DL, we demonstrate its ability to
serve as a general semantic Web service description language satisfying the previously
described requirements of facilitating robustness of software, and ensuring extendability
and integrability of WS descriptions.



Expressing Semantic Web Service Behavior using Description Logics 3

2 Related Work

There are quite a few approaches that deal with the semantic annotation of Web Service
technologies and standards to enable an automatic discovery and matchmaking pro-
cess. The current UDDI discovery mechanism only insufficiently fosters the objective
of automation. Most of the related work uses for the description of behavioral aspects
of services either WSBPEL or language descriptions using ontologies. For matching of
requests and services special algorithms have to be developed. The major difference of
our approach is that we use DL to describe service behavior. Automated discovery and
matchmaking can hence be realized using standard reasoner such as Racer5 or Pellet6.
Services matching a request can easily be determined by the subsumption mechanism
when described with the DL expressions we suggest.

OWL-S Process Model The Web Ontology Language for Services (OWL-S) utilizes
an ontology to describe Web services. Its concept is to provide markup language con-
structs to describe Web services in a semantic and thus computer-interpretable form.
OWL-S builds an upper ontology for service description that consists of three main
parts, namely the service profile, the service model and the service grounding.7 The
process model defines a subset of workflow features to describe a service as a process.
In contrast to our solution special algorithms have to be developed to exploit the process
descriptions characterized in OWL-S for matchmaking or similarity comparisons. Such
algorithms based on OWL-S are described for example in [5] and [6]. The main differ-
ence of our solution is that with describing the service process flow using description
logic, automated reasoning and matchmaking with standard reasoners become possible.

METEOR-S Process Designer The Managing End-To-End OpeRations for Semantic
Web Services (METEOR-S) project at the Large Scale Distributed Information Sys-
tems (LSDIS) Lab at the University of Georgia annotates semantics to the complete
Web service usage process. Its annotation framework is an approach to adding seman-
tics to current industry standards such as WSDL. Finding an appropriate service for
the composition is realized by a discovery engine querying an enhanced UDDI registry.
The semantic descriptions published in this registry are annotated source code that is
later transformed into either WSDL, WSDL-S or OWL-S.The OWL-S process model
generally allows to semantically describe service behavior but the transformation made
by the Semantic Description Generator however only considers the service profile and
the service grounding. The process model is to the best of our knowledge not yet inte-
grated in the transformation [7]. WSDL and WSDL-S anyway do not provide constructs
to express service behavior. Behavioral aspects are hence not published in the registry.
Therefore the METEOR-S approach in contrast to our solution does not consider the
behavioral aspects of services in the discovery of adequate matches.

5 http://www.sts.tu-harburg.de/ r.f.moeller/racer/
6 http://www.mindswap.org/2003/pellet/
7 http://www.daml.org/services/owl-s/1.0/owl-s.pdf



4 Markus Fronk and Jens Lemcke

WSMO Choreography The Web Service Modeling Ontology (WSMO [1])8 is a con-
ceptual specification for describing ontologies, Web services, goals, and mediators—
called WSMO entities. The behavioral aspects of a Web service are called its “choreog-
raphy”. The choreography in WSMO is described by an adoption of Abstract State
Machine (ASM [8]) statements. Roughly spoken, these statements are of the form
“if condition then updates endif”. In the condition, the existence of instances of
an ontological concept can be queried, which may refer to a message that was just
received. In the updates, instances of the internal ontology can be manipulated which
may trigger the sending of respective messages. This description of causal dependencies
between single communications is very similar to our approach. However, the ASMs
are very expressive and do not define when, e. g., a service matches a certain request
with respect to their behavioral constraints.

WSBPEL Abstract Processes The Web Services Business Process Execution Lan-
guage (WSBPEL)9 can be used to describe the implementation and the observable be-
havioral interface of Web services. This information could then be used for automating
tasks of the Web service usage process—e. g. WS composition [9]. However, there is no
decidable algorithm for the representation of service behavior in WSBPEL that can be
used for reasoning about relevant properties. The conversion to a suitable representation
is needed.

CoBPIA Particles The Collaborative Business Processes based on Intelligent Agent
Technology (CoBPIA [10]) project uses Constraint Satisfaction Problem (CSP) tech-
niques in order to describe process steps—called particles—that are to be composed to
executable WSBPEL processes. To our knowledge, particles can only be atomic pro-
cesses steps that are going to be composed into workflows. Web services could be in-
terpreted as these particles. However, the interdependencies of Web service operations
that we describe are not addressed in the CoBPIA particle representation.

3 Elements of behavioral aspect

In this section, we point out the behavioral patterns that can appear with regard to ser-
vices and thus have to be represented in the DL. The elements in this section are besides
being introduced described in terms of their meaning with regard to the service behav-
ior. This means that each element has another sense in terms of the allowed order of
messages. This is subsequently be described. The present work focuses on the basic
control patterns. After having shown that these patterns can be represented in DL future
work with regard to more complex patterns such as, e.g., loops can be motivated.
Messages exchanged by services can be distinguished in incoming and outgoing mes-
sages containing either parameters processed (inputs) or provided (outputs) by the ser-
vice. The service behavior, as we understand it, is made up of three constitutive as-
pects that have to be considered. (1) The existence of inputs and outputs (interactions),
(2) The sequence in which inputs and outputs occur and (3) Control constructs repre-
senting the allowed order of interactions.

8 http://www.wsmo.org/
9 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel



Expressing Semantic Web Service Behavior using Description Logics 5

Existence of interactions The fact that interactions occur in a service, we call existence.
From a service requestor’s point of view, describing a service environment10, inputs can
be provided and outputs must be received. From a provider’s point of view, the described
inputs are required and the outputs are provided. The semantics of these different inter-
pretations of the existence of interactions is discussed in Sect. 4. For modeling purposes,
the existence of inputs and outputs is in a first step considered individually before be-
ing consolidated. A service can consist of several inputs, outputs or most commonly a
combination of both. The mere existence of interactions makes no statement about the
ordering of interactions.

Sequence The order of interactions is specified defining a sequence of their appear-
ance. Thinking of public and private processes, a special order of interactions needs
for example to be defined when an internal state (that is not obvious for the external
observer) triggered by an interaction has to be reached before another interaction can
be processed. Although this implicit order of interactions is possibly not obvious in the
first instant only seeing the external visible public process, it is however necessary for
the successful execution of the operation. This requirement has to be met by services in
order to match the request. Hence it has to be made explicit. A sequence can be defined
either between inputs or outputs or between both interactions.

Control constructs The third behavioral aspect besides the mere existence of interac-
tions and the sequence are control constructs describing special derivations from the
basic sequence. In [11], 20 workflow patterns based on analysis of existing workflow
management systems and workflow languages are identified and described. Our solu-
tion focuses on the basic control patterns to show how service behavior can be described
with DL. These have been identified to model a common set of service behavior con-
structs. The basic patterns consist of sequence (described in Sect. 3), parallel split along
with its synchronization and exclusive choice along with the simple merge.11 Advanced
patterns such as multiple choice and cycles are generally imaginable, they are however
neglected in this initial approach. The parallel split expresses the concurrency of in-
teractions. This means that the interactions described as concurrent can appear in any
order. They only have to meet other sequential requirements that could be specified,
e.g. when another interaction is defined to occur before the parallel split. An example
use case from a service provider’s point of view could be as follows: After entering
necessary login information a user has to enter both credit card and address informa-
tion. The sequence of entering the credit card and address information is however of no
importance for the service functionality. Both only have to appear after the login. The
exclusive choice describes the case when only one branch of interactions is executed. At
present, the modeling of the exclusive choice in DL has not been realized. The potential
combinations of the realized concepts as there are existence and sequence, existence
and parallel split, sequence and parallel split and combinations of all three have been
modeled and introduced in the design of the DL expressions. This is described in Sect. 5
10 Environment in this regard describes the system or service landscape in which the searched or

requested service is to be embedded with its functionality
11 Parallel split and exclusive choice always include its synchronization or simple merge pattern.

An explicit distinction between these patterns is waived.



6 Markus Fronk and Jens Lemcke

4 Service matching

After having described in the previous section the elements that represent the behavioral
aspects of services and their meaning to the order of interactions, this section focuses on
the semantics of these elements with regard to the matching of services. We understand
the matching of services as the major and common task in the SWS usage process.
In this section we will outline the semantics due to which a service matches a request
given the previously introduced elements. The decision whether Web services can be
matched, depends on the previously described behavioral aspects. It can however not
easily be claimed by just comparing the existence of these constructs as the semantic
behind these is quite complex with regards to Web services. This will be described in
more detail in the following sections. Each aspect described by a service request R has
to be analyzed with regard to its effects on the fulfillment by a service S. We use DL in
such a way that a service S fulfills the requirements of a request R when

R w S (1)

can be asserted. The semantic of the behavioral aspects has been modeled in DL to
satisfy this equation. This means that the behavioral constructs are described in a way
that matching services can be identified by satisfying (1).

Existence As indicated in Sect. 3, the existence of inputs described in a request has a
different effect on a services’ ability to assert R w S than the existence of outputs.
For the DL expression representing inputs of a request R and a service S we write IR

and IS , respectively. For outputs we write OR and OS . IR describes the maximum set
of inputs that can be provided by the environment. A service however does not have to
use all the inputs provided. A service delivering the requested goal by using less inputs
still fulfills the request. This is described by (2). The set of outputs specified by the
environment defined as OR is on the other hand mandatory. It specifies the minimum
set that must at least be provided by the service’s set of outputs OS . This relationship is
defined by (3).

Inputs: IR w IS (2)
Outputs: OR v OS (3)

Sequence The sequence describing the order of inputs and outputs specified by a service
request is defined as SeqR. It has to be met by the sequence of a matching service
SeqS in order to satisfy R w S. Equations (2) and (3) must still hold. This means
that a service does not necessarily have to consume an input, even if it is described
in SeqR. This is discovered by the standard reasoning mechanism. However, when a
service consumes an input that is described in a special order in SeqR, it has to appear
with the same sequential constraints in SeqS . Outputs, in contrast, always have to be
provided. Additional outputs provided by the service S that are not necessarily required
by R (i.e. they are not defined in OR) can be part of the sequence SeqS at any position.
The same applies for interactions specified without any special order (cp. Sect. 3)in R.

Sequence: SeqR w SeqS (4)



Expressing Semantic Web Service Behavior using Description Logics 7

Control constructs The semantics related to a parallel split is as follows: A request that
defines a parallel split between interactions (for example I1 and O1)12 explicitly states,
that the order of these interactions is not relevant. (cp. Sect. 3). This means for a service
to fulfill the request that it can either specify the parallelism as well, or define an order
of the interactions involved. A service stating the sequence ”I1 and then O1” or vice
versa also matches the request. The identification of possible matches has to consider
this specialty since it can not just be derived from a one-to-one mapping of control
constructs. A service does not necessarily has to have the same control construct as the
request to match. The aspects of existence, sequence and the control constructs can be
combined in any combinations. The previously described characteristics of each of the
aspects is still considered for the matching when combined to a more complex behavior.

5 DL for behavioral aspects

In the previous sections we described the elements of service behavior and their
semantics with regard to the matching of services. In this section we will introduce the
DL-constructs that have been developed to represent the previously discussed elements
and their semantics. This will outline the basis for automated reasoning and matching.
The following proof of concept using the subsequently introduced DL-constructs will
finally show the obtained advantages.

The Description Logics approach, and more precisely OWL-DL, was chosen be-
cause of its decidability and its ability to be integrable with other semantic web
technologies facilitating the expandability of the WS descriptions. The matching of
requests and services is represented by a subsumption relation of their DL constructs.
(cp. (1)) Given several services annotated with the language constructs subsequently
defined for describing the behavioral aspects, standard reasoners can be exploited
to infer this classification. The following constructs are modeled and developed in
order to be used with the conception of classification. Matching services in terms of
the aspects previously described in Sect. 4 are automatically identified and classified
as subordination of the service request. The required DL constructs are succedingly
introduced. Requests, services and interactions are modeled as classes. The behavioral
aspects are expressed by special properties representing the relationships between
classes.

Existence For describing the semantics of the existence of interactions (specified in
Sec. 4) we introduced the existence property “has”. This can colloquially be interpreted
as: “A service has the following inputs and outputs!” Due to the fact that inputs and
outputs have different semantics for fulfillment, they are also modeled in a different
way. The DL expression for a set of inputs I1, I2, . . . , In for a request R or service
S is represented through the inputs combined by the union of specifier. Thereby, (2) is
satisfied. The set for a service S and request R, respectively, is hence defined as follows.

IS/R ≡ (I1 t I2 t . . . t In) (5)

12 The parallel split can contain only inputs or only outputs or all kind of combinations



8 Markus Fronk and Jens Lemcke

A request R providing several inputs is then described through defining a has-
relationship with the relevant set:

R ≡ ∃has.IR ≡ ∃has.(I1 t I2 t . . . t In) (6)

A service S described as S ≡ ∃has.(I1 t I2 t . . . t Im) where m ≤ n is hence iden-
tified as being adequate for R, because of satisfying R w S. Services requiring more
inputs (m > n) do not satisfy this condition. Outputs, in contrast, are enumerated using
the intersection of operator for representing the semantics in (3). The DL expression
for a set of outputs O1, O2, . . . , On is defined as follows.

OS/R ≡ (O1 uO2 u . . . uOn) (7)

A request relying on several outputs is then described, through defining a has-
relationship with the relevant set:

R ≡ ∃has.OR ≡ ∃has.(O1 uO2 u . . . uOn) (8)

A service S described as S ≡ ∃has.(O1 tO2 u . . . uOm) with m ≥ n is identified
as match, because R w S. Services providing less outputs (m < n) are not considered
to fulfill the request R. The more common case that services consist of both inputs
and outputs is accommodated by the combination of (5) and (7). These concepts are
combined using the intersection of operator. For the DL construct of the combined
interactions we write IOS/R. It is described with following equation.

IOS/R ≡ IS/R uOS/R ≡ (I1 t I2 t . . . t In) u (O1 uO2 u . . . uOm) (9)

Requests providing several inputs and relying on several outputs are then described
through defining a relationship similar to the cases (6) and (8):

R ≡ ∃has.((I1 t I2 t . . . t In) u (O1 uO2 u . . . uOm)) (10)

This expression facilitates reasoning over both the constraints defined in (2) and (3).

Sequence The sequence of inputs and outputs is described through an ordering then-
property. The succession of several interactions is represented by nesting the ordering
property. Inputs and outputs are in a first step again treated independently. The nested
expressions are combined similar the existence of inputs and outputs. Consecutive in-
puts are combined with the union of, consecutive outputs with the intersection of oper-
ator. Requests R and services S with a sequence of interactions are described as shown
in (11) and (12).

SeqR ≡ ∃ then.(I1 t (∃ then.(I2 t (∃ then.(. . . t (∃ then.(In))))))) (11)
SeqR ≡ ∃ then.(O1 u (∃ then.(O2 u (∃ then.(. . . u (∃ then.(On))))))) (12)



Expressing Semantic Web Service Behavior using Description Logics 9

The combination of inputs and outputs in a single sequence poses a complication that
could not be completely handled yet. The difference to the combination of interactions
with the DL-expression realized within the existence aspect is that within the sequence
inputs and outputs have to be combined in the nested sequentiell expression. Combina-
tions of the concepts such as inputs following other inputs, as well as outputs following
other outputs can be matched correctly using the combined expression shown in (11)
and (12). Combinations of the concepts such as inputs following outputs and outputs
following inputs however are not correctly matched in every aspect. This means that
some services are identified as match although they are not and vice versa. Goal is to
have a DL representation, that expresses the combined sequence in a way, that all kinds
of cases are correctly classified. In Sect. 6 we provide an example that show a case that
correctly distinguishes appropriate and not appropriate services for a defined request,
given the present DL-constructs.

Control constructs The semantics of a parallel split, as it is described in Sec. 4, is
expressed as follows considering as example three existing interactions.

SeqR ≡ ∃ then.(I1 t (∃ then.((I2 t (∃ then.I3)) t (I3 t (∃ then.I2))))) (13)
SeqR ≡ ∃ then.(O1 u (∃ then.((O2 u (∃ then.O3)) t (O3 u (∃ then.O2))))) (14)

Equations (13) and (14) describe the concurrency of the second and the third interac-
tion. The sequence of occurance is not relevant. Both a service S1 that has the second
before the third13 and a service S2 that has the third before the second14 interaction are
identified as match for the request R. (R w S is satisified)

Service behavior description A service behavior consists (as outlined in the previous
sections) of the existence part (cp. Sec. 5) and the sequential ordering (cp. Sec 5 and
Sec. 5). The DL expression for the service behavior description is hence the combi-
nation of both (represented by the intersection of operator). The behavioral aspects of
requests R and services S are described as follows. Assuming a request that describes
the three inputs (I1, I2, I3) sequentially ordered (first I1 then I2 then I3) is represented
by the DL construct:

R ≡ ∃has.(I1 t I2 t I3) u ∃ then.(I1 t (∃ then.(I2 t (∃ then.(I3))))) (15)

Services described with the same DL expressions can be identified as a match by veri-
fying the satisfaction of R w S. This inference can be done using standard reasoners.
Outputs are described accordingly, combining the existence and sequence constructs
for outputs.

13 Seq(S1) ≡ ∃ then.(I1 t (∃ then.(I2 t (∃ then.I3))))
14 Seq(S2) ≡ ∃ then.(I1 t (∃ then.(I3 t (∃ then.I2))))



10 Markus Fronk and Jens Lemcke

6 Proof of Concept

In the following we show a scenario applying the previously described DL-constructs.
The behavioral aspects of a request and possible services are subsequently described
with OWL-DL and existing inference mechanisms are used to draw conclusions about
the match of the described services. This shows how code robustness can be improved
exploiting existing standard reasoners, because the formal semantics of DL facilitates
the separation of the model of aspects of the Web service from its interpreting applica-
tion.
The first example only considering interactions is then extended to also consider behav-
ior showing the simple extendability of our approach. Different aspects developed inde-
pendently from each other that adhere to the same formal semantics can be integrated
in a single analysis module considering all aspects as a whole. The use of OWL-DL
constructs further allows for the later the non-intrusive integration with other ontologi-
cal models using the same ontology language.
The scenario described in the subsequent section is as follows. A user requests an order-
ing service that requires a login, an order and user data as inputs and provides an order
confirmation as output. Furthermore two services, (1) a store service, appropriate for
our request, and (2) a fraud service spying user data are described. The corresponding
DL-constructs are defined as follows.

R ≡ Ordering ≡ ∃has.((login t order t userData) u (conf))
S1 ≡ Store ≡ ∃has.((login t order) u (wMsg u conf))
S2 ≡ Fraud ≡ ∃has.((login t order t userData) u (conf))

The store service requires only a login and an order and provides both a welcome mes-
sage and a confirmation for the order. The fraud service in contrast has the same inter-
actions as the ordering request. The reasoner given these service descriptions has as a
result the inference shown in Fig. 1. Considering only the interactions existent within
the services, both services are identified as match to the request R. (R w S) Consid-
ering in addition the service behavior for the identification of appropriate services, we
just extend the previous expressions with the introduced DL-constructs to define the al-
lowed ordering of interactions. The most important constraint is that the order and user
data is not provided until a login has occured. The store service satisfies this require-
ment, the fraud service however requires the user data before the login. The according
DL-constructs for the request and the services are defined as follows.

R ≡ Ordering ≡ ∃has.((login t order t userData) u (conf)
u ∃then.(login t (∃then.(order t (∃then.(userData u (∃then.(conf))))))))

S1 ≡ Store ≡ ∃has.((login t order) u (wMsg u conf) u ∃then.(login

u (∃then.(wMsg t (∃then.(order t (∃then.(userData u (∃then.(conf))))))))))

S2 ≡ Fraud ≡ ∃has.((login t order t userData) u (conf)
u ∃then.(userData t (∃then.(login t (∃then.(order u (∃then.(conf))))))))



Expressing Semantic Web Service Behavior using Description Logics 11

Given these service descriptions, the result inferenced by the reasoner is shown in Fig. 2.
Considering as well the behavioral aspects only the store service is inferred as a match
for the request. The fraud service does not follow the allowed order of interactions.

=⇒

Fig. 1. Inference considering Interactions

=⇒

Fig. 2. Inference considering Behavior

7 Conclusions & Future Work

In this paper we have introduced a way to describe service behavior using OWL-DL.
We described the different constructs for defining the mere existence of interactions,
the sequence and the concurrency. With the use of DL as descriptive element our ap-
proach accomplishes the requirements of robustness, extendability and integrability of-
ten lacking in related work that describes service behavior aspects. On the basis of a
simple example we finally showed the application of the constructs demonstrating the
exploitation of standard reasoners. We see the solution described in this paper especially
adaptable for the automation of the discovery and the composition of web services.

Based on the expressions given, and their evaluation by the subsumption-reasoning
of a standard reasoner (also called “classification” [2, p. 48]), the task of finding Web
services matching the technical (inputs and outputs) and behavioral aspects (causal con-
straints over inputs and outputs) of a Web service request can be automatically executed.
Using the technique described for the matchmaking task, there is no additional applica-
tion logics needed.

In addition, we understand our definition of a formal description of Web service be-
havior suitable for automatic matchmaking of requests and Web services as an impor-
tant step towards the creation of an extensible, robust, automatic semantic Web service
composer. The task of semantic Web service composition, amongst other jobs, mainly
bases on well-known “syntactic” Web service composition as well as “semantic” dis-
covery. Traditional Web service composition uses, e. g., planning [12] or configuration
techniques [13] to come up with the composed workflow of Web services. Semantic
composition mainly differs in the way the composer finds services being candidates for
addition to the final workflow. For this step, it uses the additional information that is
given in a semantic Web service description. This information may be the subsump-
tion relations of different input and output elements, behavioral constraints, policy re-
quirements and properties, or other arbitrary aspects of Web service descriptions. The



12 Markus Fronk and Jens Lemcke

described approach can therefore additionally be exploited for the tasks existent in the
service composition as it supports the semantic description of services. Further research
however has to occur in this area.

Future work will focus on three aspects of the service behavior description. (1) The
combination of interactions in the sequence expression to cover all special cases in order
to provide a set of DL constructs that allows to describe the main spectrum of service
behavior. (2) An expression for modeling the exclusive choice. (3) The representation
of cycles and advanced workflow patterns as extension to the basic expressions for
describing even special service behavior. The future research, related to these aspects of
describing the service behavior with the presented DL-constructs, will finally enable us
to understand whether the expressibility of DL is enough for expressing the constraints
that characterize service behavior.

References
1. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. In: Applied Ontology 1.
Volume 1. IOS Press (2005) 77–106

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
Description Logic Handbook: Theory, Implementation, and Applications. In Baader, F.,
Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: Description Logic
Handbook, Cambridge University Press (2003)

3. Preist, C., Cuadrado, J.E., Battle, S., Grimm, S., Williams, S.K.: Automated business-to-
business integration of a logistics supply chain using semantic Web services technology. In
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A., eds.: International Semantic Web Confer-
ence. Volume 3729 of Lecture Notes in Computer Science., Springer (2005) 987–1001

4. Grimm, S., Lamparter, S., Abecker, A., Agarwal, S., Eberhart, A.: Ontology based spec-
ification of Web service policies. In Dadam, P., Reichert, M., eds.: GI Jahrestagung (2).
Volume 51 of LNI., GI (2004) 579–583

5. Bansal, S., Vidal, J.M.: Matchmaking of web services based on the daml-s service model
(2003)

6. Ankolekar, A., Paolucci, M., Sycara, K.: Spinning the owl-s process model, toward the
verification of owl-s process models (2004)

7. Rajasekaran, P., Miller, J., Verma, K., Sheth, A.: Enhancing web services description and
discovery to facilitate composition (2004)

8. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer-Verlag (2003)

9. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli, P.,
Traverso, P.: Astro: Supporting composition and execution of web services. In Benatallah, B.,
Casati, F., Traverso, P., eds.: ICSOC. Volume 3826 of Lecture Notes in Computer Science.,
Springer (2005) 495–501

10. Wahl, T.: Konzeption und realisierung einer ontologie zur modellierung und ableitung
von geschaeftsprozessen. Diplomarbeit, Technische Universitaet Berlin, DEUTSCHLAND
(2005)

11. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns (2002)
12. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web

service composition. In: AIMSA. (2004) 106–115
13. Stumptner, M.: Configuring web services. In: Proceedings of the Configuration Workshop

at the 16th European Conference on Artificial Intelligence (ECAI). (2004) 10–1/10–6


