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Abstract: In order to realize the vision of the Semantic Web, a semantic model for encoding content in the
World Wide Web, efficient storage and retrieval of large RDF data sets is required. A common technique
for storing RDF data (graphs) is to use a single relational database table, a triple store, for the graph.
However, we believe a single triple store cannot scale for the needs of large-scale applications. Instead,
database schemas that can be customized for a particular dataset or application are required. To enable
this, some RDF systems offer the ability to store RDF graphs across multiple tables. However, tools are
needed to assist users in developing application-specific schema. In this paper, we describe our approach
to developing RDF storage schema and describe two tools assisting in schema development. The first is a
synthetic data generator that generates large RDF graphs consistent with an underlying ontology and using
data distributions and relationships specified by a user. The second tool mines an RDF graph or an RDF
query log for frequently occurring patterns. Knowledge of these patterns can be applied to schema design
or caching strategies to improve performance. The tools are being developed as part of the Jena Semantic
Web programmers’ toolkit but they are generic and can be used with other RDF stores. Preliminary results
with these tools on real data sets are also presented.
Key Words: RDF, Semantic Web, Schema Design, Storage Tuning, Data Mining, Sequential Pattern Min-
ing, Synthetic Data Generation.
Category: H.2.1, H.2.2, H.2.8

1 Introduction

In order to realize the vision of the Semantic Web, a semantic model for encoding content in
the World Wide Web, efficient storage and retrieval of large RDF data sets is required. Effi-
cient storage is also needed if Semantic Web technologies are to be applied to other application
domains such as enterprise integration, as discussed in [BL03]. Storing RDF in relational and
object-relational database management systems has been the focus of much research. At first
glance, a relational model is a natural fit for RDF. The RDF model is a set of statements about
Web resources, identified by URIs. Those statements have the form < S, P, O > and are inter-
preted as subject S has a predicate (property) P with a value O. So, an RDF model is easily
implemented as a relational table of three columns. Many RDF storage systems have used this
triple-store approach [HP 03] [ACK+01] [KAO] [BK01] [TAP02].

In the absence of any other knowledge about the objects being stored, there are few options
for storage optimization and a triple-store approach is reasonable. However, RDF often encodes
higher-level constructs, such as lists, and higher-level semantics for ontologies, such as class
hierarchies and constraints. In addition, real-world data and applications often have access pat-
terns or structure. The basic triple store approach cannot leverage such higher-level knowledge
about objects or their access patterns. For scalability and high-performance, we believe that the
triple-store approach must be augmented by other storage strategies optimized for the data being
stored or the applications that use it.

Previous work on RDF stores has used the RDF Schema class definitions and class hierar-
chies to derive an application-specific database schema, [ACK+01] [KAO] [BK01]. However,
this requires a priori knowledge about the data, which may not always be obtainable. In this
paper, we consider how to derive an efficient storage schema without a priori knowledge.

To explore various layout options as well as understand performance tuning trade-offs in
RDF stores, we are developing a set of tools for RDF data sets. In this paper, we describe two



tools, one to analyze RDF graphs or queries for patterns, and another that generates synthetic
RDF data sets. We have used these tools to assist in developing the persistence subsystem for the
second generation of Jena, a leading Semantic Web programmers’ toolkit [McB02] [CDD +03].
The Jena2 persistence subsystem [WSKR03] supports property tables and has various config-
uration parameters and our tools can help study trade-offs among the options. These tools are
implemented as Jena applications but can be used with or easily ported to other RDF stores.

The rest of the paper is organized as follows: Section 2 introduces our approach to designing
application-specific schema for RDF data. Section 3 defines the RDF data analysis problem and
our data analysis tool. Some preliminary work in applying this tool to real RDF data sets is
described in Section 4. Section 5 presents the RDF synthetic data generation tool. Section 6
explains the related work and we conclude our work in Section 7.

2 Application-Specific Schema Design

Most RDF stores have options and tuning parameters to influence the underlying storage engine.
Understanding the interaction and trade-offs among these parameters is a complicated task. We
believe iterative design and experimentation with test data can simplify the process and yield
a robust schema design that performs well for the intended application. We are developing a
set of tools to facilitate schema design and storage tuning. Figure 1 sketches our view of the
application-specific schema design process and how our tools interact.
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Figure 1: Iterative RDF Schema Design Process and Tools.



The process is summarized as follows. First, an initial schema design is developed based on
analyzing the data to be stored. Second, synthetic data sets that model the data to be stored are
generated. Also generated are benchmark programs to evaluate the performance of the schema
on the synthetic data. Third, the benchmarks are run. If the performance is not acceptable, the
schema design is adjusted and the process iterates.

We assume the existence of an initial data set on which we can apply our data analysis tool. If
no such data set exists, the initial schema design is based solely on knowledge of the application
and expected usage patterns. The analysis from Stor-Mine serves two purposes: (1) discovering
features and characteristics of the graph to guide the data generator in generating more realistic
synthetic data sets and (2) discovering patterns in graphs or queries that can be leveraged to
improve performance.

For example, person objects may always have properties like family name, given name,
phone and email. Stor-Mine could reveal this regular structure. For such a graph, the property
table shown in Table 1 might have a performance advantage for storing RDF statements about
persons.

Subject FamilyName GivenName Phone eMail
ex:person1 Ding Luping lisading@WPI.EDU
ex:person2 Kuno Harumi 123-456-7890 harumi.kuno@hp.com
ex:person3 Sayers Craig csayers@hpl.hp.com
ex:person4 Wilkinson Kevin 123-555-7890

Table 1: Property Table.

The Stor-Gen tool is used to generate synthetic data sets that model the actual data of an
application. It is reasonable to ask why synthetic data is needed if actual data exists. Use of
actual data presents two problems. First, the size of the actual data may not match the needs of
the intended application. A robust schema design should perform well over a range of data set
sizes. Synthetic data generation ensures we can work with whatever data set sizes are required.
Moreover, simply sampling a large data set to create a smaller one is not valid because the
sampling may lose relationships among the data items. Second, use of synthetic data ensures
that the benchmark measures exactly the features of interest, while real world data usually has
noise that makes interpreting results of the benchmarks difficult.

The Stor-Mark tool generates a benchmark suite that evaluates the performance of the ap-
plication schema on the synthetic data sets. The benchmark specifications are user-provided as
well as automatically derived from the Stor-Gen specifications. The Stor-Perf tool actually runs
the benchmark and records the results. It is implemented as a JUnit [JUn] application. The entire
process iterates until a schema design with acceptable performance is found.

Once a schema has been designed, the actual data is loaded and the application installed.
Ideally, the application will have acceptable performance. However, if the synthetic data does
not correctly characterize the actual data or if the benchmarks do not reflect the application,
performance may be poor. Even if performance is good, user access patterns may change over
time. Thus, it may be necessary to periodically tune or redesign the schema. Query logs and
performance statistics can be fed back into the data analysis tool to further optimize the schema.
To support this, Stor-Mine can find patterns in query logs as well.



3 RDF Data Analysis

Our goal is to analyze RDF data and queries to discover interesting patterns to help design
and optimize application-specific schema. We now define four pattern discovery problems and
describe our tool for addressing these problems.

3.1 RDF Pattern Discovery Problem

As mentioned earlier, an RDF graph is a set of statements of the form < S, P, O >, interpreted
as subject S has property P with value O. See [KC02] for more details. For this work, we
only consider static RDF graphs and assume that under steady-state conditions the statistical
characteristics of the graph, for mining purposes, are stable (not always a valid assumption, of
course). For RDF graphs, we aim to discover property co-occurrence patterns that would suggest
possible properties to store together in a property table.

Problem PD1: Subject-property co-occurrence pattern discovery.

Informally, we want to find properties that are frequently defined for the same subject (e.g.,
name, address, etc.). We find the longest patterns with a minimum level of support (frequency
of occurrence). The properties in such patterns are then candidates for grouping together in a
property table. For this paper, we do not consider the (RDF) types for the subject as, in general,
the types need not be defined. A formal definition of all four problem statements is given in
[DWSK03] but is not included here due to space limitations.

3.2 RDF Query Pattern Discovery Problems

In this paper, we only consider mining of RDQL queries. RDQL, the query language for Jena2,
is an implementation of the Squish query language [LM02]. An RDQL query can be repre-
sented as a conjunction of triple patterns, TP1 ∧ TP2 ∧ ... ∧ TPn, where TPi has the form
< S, P, O > and each element is either a constant, a variable or a don’t-care. A triple pattern
binds its unbound variables (elements) to statements that match its constant elements and its
bound variables. The advantage of this triple-pattern representation is that the queries can be
modeled as RDF statements (graphs).

A query log is then a time-ordered sequence of RDQL queries applied to an RDF graph.
Given this log, we have identified three problems of interest.

Problem PD2: Single query pattern discovery.

Informally, we are given a log of queries Q1, Q2, ..., Qk where each Qi is a conjunction of triple
patterns as above. We assume that some queries are repeated (or are simple variants) and we
want to find those commonly occurring queries.

To compare and match queries, they must be transformed because variable names are ar-
bitrarily assigned (see [DWSK03] for details). For example, the two queries below have same
pattern but different representations.

Query1: (Var1, VCARD:Name, -) (Var1, VCARD:Title, "professor")
Query2: (Var4, VCARD:Name, -) (Var4, VCARD:Title, "instructor")

In general, we look for the largest queries with a minimal level of support. Note that larger
queries may subsume smaller queries, e.g., the query (Var3, VCARD:Name, -) is subsumed by
those above. The frequently-occurring queries are then candidates for materialized views or
indexes.



Problem PD3: Subject-property query pattern discovery.

Informally, we are looking for common triple patterns among all the queries. In other words,
we decompose all queries into their individual triple patterns and look for properties that are
commonly queried for the same subject. In the above example, we see a simple pattern of
VCARD:Name and VCARD:Title being queried for a common subject. As before, we look for
the largest set of properties with a minimum level of support. The properties within a pattern are
then candidates for property tables or caching.

Problem PD4: Subject-property query sequence discovery.

Informally, we are looking for repeated sequences of queries (triple patterns) for a common
subject. As in PD3, the queries are decomposed into their individual triple patterns, tagged by
the query time (or the sequence number of the query). The triple patterns are then partitioned by
subject. Only constant subjects are considered: partitions with variable and don’t-care subjects
are ignored. We then look for common sequences of properties that are queried for subjects.

The common sequences of properties found provide insight into the control flow of the
program and assist in the design of cache prefetching strategies.

3.3 RDF Mining

Market-basket analysis.

We apply data mining techniques for Market-Basket Analysis [AIS93] to solve the above pattern
discovery problems. These techniques are developed to find the association rules [AIS93] or
frequent item set sequences [AS95] in a database of customer transactions to answer the question
of which items are frequently purchased together. A savvy marketer can then use the knowledge
of frequent item sets for marketing actions to achieve some business objective such as increase
revenue, reduce inventory, etc.

The input data for association rule mining is a collection of baskets, each of which is a set of
items purchased by a customer in one transaction (quantities of items are not considered). Two
input parameters are the support s, which specifies the fraction of baskets that must contain
the items in an association rule and confidence c for rules (of the form “A implies B”) which
specifies the fraction of baskets that contain B, from among the baskets that contain A. See
[AIS93] for further details on association rule mining.

The input data for sequential pattern mining is a collection of customer-sequences. Each
customer-sequence is an ordered sequence of transactions made by a single customer over a
period of time, where each transaction is, as before, an item set. The algorithm also takes a
support s parameter and looks for sequences supported by at least (numCustomers ∗ s) cus-
tomers. A customer supports a sequence seq if seq is contained in the customer-sequence for
this customer. The readers are referred to [AS95] for further details.

Problem Mapping.

We can easily map our problems into a Market-Basket Analysis (MBA) framework. Problems
PD1, PD2 and PD3 are mapped into finding frequent item sets in MBA, and Problem PD4 is
mapped into finding sequential patterns in MBA. In Problem PD1, each subject-property co-
occurrence set acts as a basket, and in Problem PD3, each subject-property query set acts as a
basket. The properties become the items contained in the basket.



In Problem PD2, the triple patterns within a query form a basket. But, as mentioned ear-
lier, the triple patterns are transformed to unify the variable names (see [DWSK03]). In Prob-
lem PD4, the subject-property query sequence acts as customer-sequence. However, unlike
customer-sequence, each item set in property query sequence only contains one item, which
is a property.

3.4 Stor-Mine: RDF Data Analysis Tool

Our RDF data analysis tool Stor-Mine can search an RDF graph or RDQL query log for pat-
terns that could be used to derive an optimized storage schema for the data. Stor-Mine (Figure
2) consists of three main modules: Data pre-processing, basket derivation and pattern discov-
ery. Data pre-processing cleans the original RDF graph or query log by filtering out data that
cannot currently be exploited by our algorithms (e.g., properties for rdf:Bag such as 1, 2,
etc., see [DWSK03]). Basket derivation takes these RDF statements and transforms them into
suitable ”baskets”, thus preparing the input for mining. The pattern discovery module includes
the largely application-independent use of generic data mining techniques such as discovery of
frequent item sets, association rules and sequential patterns.

RDF File

Query Log

Filter

RDF Statements
OR

Triple Patterns
Bask-Type

Data
Frequent
PatternsData

Pre-Processing
Basket

Derivation
Pattern

Discovery
OR

Figure 2: Architecture of Stor-Mine.

We have incorporated implementations of many commonly used data mining algorithms
such as Apriori, FPgrowth, etc. and also our own implementation of some mining algorithms,
for example, AprioriAll. Currently, the discovery of frequent property co-occurrence pattern,
frequent property query pattern and frequent single query pattern uses the FPgrowth algorithm
[HPY00], a very fast algorithm for finding the large frequent item sets. Sequential property
query pattern discovery uses the AprioriAll algorithm introduced in [AS95].

4 Experiments

4.1 Initial Experiment: Mining MusicBrainz

A preliminary experiment with Stor-Mine was performed on a subset of MusicBrainz [Mus], an
open-source database about music compact discs. MusicBrainz is stored in a relational database
but is exported as an RDF graph. Consequently, it is highly structured.

MusicBrainz consists of 3 classes: Artist, Album, Track. Artist identifies an artist and in-
cludes a list of references to the albums by that artist. Album identifies an album and has a
reference to the artist and a list of references to the tracks on the album. Track identifies one
track in an album and references the artist. Stor-Mine should be able to recover this class struc-
ture from the RDF graph.

Our sampled subset contains about 200,000 statements which reduces to 50,000 after fil-
tering. It contained roughly equal numbers of Artist, Album and Track class instances. The



complete data set has more than an order of magnitude more Track instances than Artists. So,
ours was an artificial experiment but a good baseline comparison.

On current technology PCs, Stor-Mine takes about 420 milliseconds on this dataset. Different
values of support were tried and results for two levels are shown in Table 2 and Table 3.

Property1 Property2 Property3 Property4 Comment
Pattern1 rdf:type title creator duration Track instance
Pattern2 rdf:type title sortName albumList Artist instance
Pattern3 trackNum Track number

Table 2: MusicBrainz Property Co-occurrence Patterns (Min Support: 0.05).

Property1 Property2 Property3 Property4 Property5 Comment
Pattern1 rdf:type title creator duration trmidList Track instance
Pattern2 rdf:type title sortName albumList Artist instance
Pattern3 trackNum Track number
Pattern4 rdf:type title creator release trackList Album instance

Table 3: MusicBrainz Property Co-occurrence Patterns (Min Support: 0.01).

Stor-Mine run with a higher support level (5%) uncovered the Track and Artist classes but
not the Album class. The trackNum property is actually a property of a Track class. The reason
it appears separately rather than with the other Track properties (Pattern1) is because the data
was not correctly sampled (i.e., the Track instance for these trackNum properties were not in the
sample so they appear as separate classes).

Note that there are many more trackNum properties than Album instances which is why the
trackNum frequent item set is found before the Album frequent item set. Stor-Mine run with a
lower support level (1%) does uncover the Album class. It also finds an additional property for
the Track class, trmidList, that does not appear at higher support levels.

Stor-Mine is able to distinguish overlapping uses of the same property in different classes
(title and creator). However, a low support level was required to find all the classes. And this
was with an artificial sample with roughly equal numbers of class instances. The complete data
set has more than ten times as many Track instances as Artists, requiring an even lower support
level to find all three classes. Consequently, a more sophisticated approach is needed.

Remaining Problems.

In mining the MusicBrainz data, we found the following issues that need to be addressed in the
future. Our current heuristic is to look for the longest frequent property sets that have a minimal
level of support. However, we cannot simply use the longest frequent item set because the dataset
may have groups of properties that overlap but are actually distinct clusters. For example, the
properties name, address and phone may be used both for a Person class and a Business class.
Yet properties like spouse, height, weight, number-of-employees, revenue are particular to one
class or the other. Stor-Mine should be able to distinguish such clusters and not generate a large
frequent property set which is the union of them.

On the other hand, we cannot simply use the frequent property set with the highest support.
This is because optional values may result in overlapping item sets. Consider a dataset of prop-
erties about people containing a number of gender-specific properties. The mining algorithm



would produce two frequent items sets, one for males and one for females, where the support of
each depends on the proportion of males and females in the dataset. But, what is really wanted
is just a single property table for person.

Other RDF metadata such as rdf:type can also be useful in mining an RDF graph, e.g., vary-
ing the support level per type. However, we cannot depend on the existence of type information
in an RDF graph. One goal of our initial experiment was to determine the effectiveness of Stor-
Mine without special treatment for rdf:type. As an aside, we note that an RDF graph in which
every statement is reified will have just one pattern. In the future we will also study special
treatment for reification.

4.2 Mining Haystack Trace

In order to explore our analysis techniques over less highly structured graphs, we ran Stor-Mine
over a Haystack trace [Qua]. Haystack [QHK03] is a personal knowledge management system.
It uses RDF for all its internal objects, including the GUI. The Haystack trace is an RDF graph of
109962 statements (triples) and a query log containing 51844 queries 1. Before doing each kind
of pattern discovery, we pre-process the data into appropriate format to feed into the mining
algorithm.

Mining RDF Graph

The RDF graph was analyzed to look for frequent subject-property co-occurrence patterns as
described in section 3. Due to space limitations, these results are not shown here (see [DWSK03]
for details). However, unlike the MusicBrainz results, there were few clear-cut candidates for
property tables and many patterns with only two properties, one of which was rdf:type. This
suggests it may be beneficial to mine this data by class (rd:type), which is future work.

Mining Query Log

The Haystack query log has 51844 queries which were decomposed into 53500 triple patterns.
This implies that most queries only contain a single triple pattern (few joins).

Discover single query patterns.

As the first step, we search for the query patterns that are frequently asked (problem PD2).
The results are shown in Table 4. All the frequent query patterns along with their support

and the number of triples contained are listed. “C” means constant, “V” along with a number
means some specific variable and “-” means don’t-care. The same variable used in multiple
triples within one query implies a join. From the table, we observe the following:

1. Most queries are single property value retrieval, that is, retrieve the value of a specific prop-
erty of the given subject, represented as (C, property, –), e.g., pattern Q01.

2. A few queries search for subjects with a given property value, represented as (–, property,
C), for example, the triple (–, ozone:dataDomain, C) in pattern Q11.

3. Few queries contain a join pattern, e.g., pattern Q47.

1 The Haystack queries had to be transformed into an RDQL triple-pattern representation.



ID Support Pattern ID Support Pattern
Q01 0.134 [(C, config:singleton, -)] Q33 0.005 [(C, adenine:debug, -)]
Q02 0.113 [(C, config:hostsService, C)] Q34 0.005 [(C, adenine:preload, -)]
Q03 0.048 [(C, ozone:registerService, -)] Q35 0.005 [(V1, rdf:type, C),
Q04 0.043 [(C, ozone:registerToolbar, -)] (V1, ozone:viewDomain, C)]
Q05 0.040 [(C, rdf:type, C)] Q036 0.005 [(C, ozone:connector, -)]
Q06 0.038 [(C, rdf:type, -)] Q37 0.004 [(C, ozoneslide:textAlign, -)]
Q07 0.032 [(C, dc:title, -)] Q38 0.004 [(C, summaryView:titleSlide, -)]
Q08 0.031 [(C, rdfs:label, -)] Q39 0.004 [(-, information:knowsAbout, C)]
Q09 0.024 [(C, haystack:javaImplementation, -)] Q40 0.004 [(C, ozoneslide:defaultText, -)]
Q10 0.024 [(C, haystack:className, -)] Q41 0.004 [(C, ozoneslide:text, -)]
Q11 0.021 [(-, ozone:dataDomain, C)] Q42 0.004 [(C, ozoneslide:wrap, -)]
Q12 0.014 [(C, ozoneslide:bgcolor, -)] Q43 0.004 [(C, config:dependsOn, -)]
Q13 0.014 [(C, ozone:onEnterPressed, -)] Q44 0.003 [(C, config:includes, -)]
Q14 0.014 [(C, ozone:tooltip, -)] Q45 0.003 [(C, dc:description, -)]
Q15 0.014 [(C, ozone:onClick, -)] Q46 0.003 [(C, haystack:md5, -)]
Q16 0.014 [(C, ozone:putProperty, -)] Q47 0.003 [(C, rdf:type, V1),
Q17 0.014 [(C, ozone:putLocalProperty, -)] (V1, summaryView:titleSourcePredicate, -)]
Q18 0.013 [(C, content:path, -)] Q48 0.003 [(C, ozoneslide:borderLeftWidth, -)]
Q19 0.013 [(C, daml+oil:rest, -)] Q49 0.003 [(C, ozoneslide:marginY, -)]
Q20 0.013 [(C, daml+oil:first, -)] Q50 0.003 [(C, ozoneslide:marginX, -)]
Q21 0.011 [(C, ozoneslide:fontSize, -)] Q51 0.003 [(C, adenine:main, -)]
Q22 0.011 [(C, ozoneslide:alignX, -)] Q52 0.003 [(C, ozoneslide:marginBottom, -)]
Q23 0.011 [(C, ozoneslide:linkColor, -)] Q53 0.003 [(C, ozoneslide:borderWidth, -)]
Q24 0.011 [(C, ozoneslide:fontBold, -)] Q54 0.003 [(C, ozoneslide:borderColor, -)]
Q25 0.011 [(C, ozoneslide:color, -)] Q55 0.003 [(C, ozoneslide:marginLeft, -)]
Q26 0.011 [(C, ozoneslide:alignY, -)] Q56 0.003 [(C, ozoneslide:margin, -)]
Q27 0.011 [(C, ozoneslide:style, -)] Q57 0.003 [(C, ozoneslide:marginTop, -)]
Q28 0.011 [(C, ozoneslide:fontFamily, -)] Q58 0.003 [(C, ozoneslide:marginRight, -)]
Q29 0.008 [(C, ozone:dataSource, -)] Q59 0.003 [(C, ozoneslide:borderBottomWidth, -)]
Q30 0.007 [(V1, rdf:type, C), Q60 0.003 [(C, ozoneslide:borderTopWidth, -)]

(V1, ozone:viewDomain, V6), Q61 0.003 [(C, ozoneslide:borderRightWidth, -)]
(C, haystack:classView, V6)] Q62 0.003 [(C, dataProvider:predicate, -)]

Q31 0.006 [(C, rdfs:subClassOf, -)] Q63 0.003 [(C, ozoneslide:child, -)]
Q32 0.005 [(C, haystack:JavaClass, -)] Q64 0.003 [(C, haystack:view, -)]

Table 4: Frequent Query Patterns (Min Support: 0.003).

The frequency of many simple queries suggests a design pattern in which the program flow
is determined by simple queries on some subject. In effect, the sequence of queries is a trace
of program flow. This motivated a second set of experiments on discovering frequent subject-
property query patterns. If frequent access patterns to common properties are discovered, this
suggests a caching strategy that eagerly retrieves the common property values may be beneficial.

ID Support Pattern
PQ01 0.246 [config:singleton]
PQ02 0.064 [haystack:javaImplementation]
PQ03 0.063 [content:path, rdf:type, dc:description, config:includes, config:dependsOn, haystack:md5, adenine:main]
PQ04 0.043 [rdf:type, ozone:onClick, ozone:onEnterPressed, ozone:tooltip, ozone:registerService, ozone:putProperty,

ozone:putLocalProperty, ozone:registerToolbar, ozoneslide:style, ozoneslide:fontFamily, ozoneslide:fontSize,
ozoneslide:fontBold, ozoneslide:color, ozoneslide:bgcolor, ozoneslide:linkColor, ozoneslide:alignX, ozones-
lide:alignY, ozoneslide:children]

PQ05 0.043 [haystack:className]
PQ06 0.041 [rdf:type, ozone:onClick, ozone:onEnterPressed, ozone:tooltip, ozone:registerService, ozone:putProperty,

ozone:putLocalProperty, ozone:registerToolbar, ozone:dataSource]
PQ07 0.040 [dataProvider:predicate]
PQ08 0.037 [rdf:type, ozone:onClick, ozone:onEnterPressed, ozone:tooltip, ozone:registerService, ozone:putProperty,

ozone:putLocalProperty, ozone:registerToolbar, ozone:connector]
PQ09 0.037 [adenine:preload, adenine:debug, haystack:JavaClass]
PQ10 0.034 [rdf:type, haystack:view, rdfs:label, dc:title, summaryView:titleSlide]
PQ11 0.031 [ozone:icon]
PQ12 0.030 [ozone:putProperty, ozone:putLocalProperty, ozone:registerToolbar, ozone:viewPartClass]

Table 5: Frequent Property Querying Patterns (Min Support: 0.030).



Discover subject-property query patterns.

The previous result shows that Haystack generates many simple queries for a subject. In this
step, we search for frequently occurring triple patterns for a common subject (problem PD3).

To conserve memory, we filter out baskets whose size exceeds some threshold. In particular,
a few subjects have a very large number of properties. We also filter out triples with a don’t-care
as a subject. Hence the subject is either a bound variable or a constant. Table 5 shows the result
of this experiment, in which the minimal support is set to 0.03 and all the baskets larger than 40
are ignored. A total of 7599 triple patterns are ignored.

In this experiment, we get a number of long property querying patterns. However, a signifi-
cant portion of them overlap, e.g., patterns PQ04, PQ06 and PQ08. And the 12 frequent patterns
cover a large fraction of the total queries, approximately 70%. This suggests that a property table
may have a big benefit because it can save resources by reducing the number of stored records
and by optimizing queryies by enabling a property value pre-fetching strategy.

From this experiment, we can derive the frequently queried properties which belong to the
same subject. But the order of the queries is ignored. Also by looking at the long patterns such
as PQ04, PQ06 and PQ08, we guess that the queries included in these patterns are issued in
some fixed order. To verify this, we need to run a sequential pattern mining algorithm to search
for frequent sequential query patterns. This remains as future work.

5 RDF Data Generation

5.1 Stor-Gen: Synthetic RDF Data Generator

Stor-Gen is an RDF data generator that generates large volumes of synthetic RDF data. The
generated data is useful in experiments to measure the effectiveness of different storage schema,
to evaluate different processing algorithms or to run comparative benchmarks. Stor-Gen allows
a high degree of control over the characteristics of the generated data. Moreover, unlike many
other synthetic data generators [ANZ01], Stor-Gen is capable of modeling relationships among
class instances.

In its current implementation, Stor-Gen generates class instances for specified classes. Each
class instance contains a set of property values of the properties specified for that class. This was
our immediate need. In the future, we aim to extend Stor-Gen to generate arbitrary RDF data
sets, i.e., statements about resources with arbitrary class memberships.

For each property of a class, the cardinality, i.e., the number of property instances, can
be either a fixed value or a range which conforms to a random distribution function, called a
property cardinality distribution. The range may include zero which makes the property optional
for the class. Therefore, different instances of a class may have identical, overlapping or disjoint
sets of properties.

The values of a property for a class conform to a random distribution function called a
property value distribution. The value can be either a literal (e.g., integers, strings) or a re-
source (URIs). Currently, the values for a given property must be homogeneous, that is, either
all literal values or all URIs. The distribution functions supported for both property cardinality
and property value distributions include constant, uniform, Gauss (Normal), Poisson and Zipf.
For generating random values from a Zipfian distribution, we use the technique described in
[GSE+94].

Currently, string values are either fixed-length and generated by choosing random letters
from an alphabet, or generated by choosing random words from an existing vocabulary. String



literals may include a language tag and English and Chinese 2 literals are supported. More lan-
guages may easily be supported.

Stor-Gen can also generate property values of composite type, for example, blank nodes.
A blank node is considered as an anonymous class instance. This is useful for complex object
values that have sub-components, such as address. The container structures such as Bag, Seq
and Alt are also supported and they can be repeated and nested.

Resource type values may reference other generated class instances or external resources.
Properties of a class may also be self-referencing. This way trees of references can be generated
to model relationships such as taxonomies, ancestors, sub-parts. More complicated chains of
references such as the Markov chains in [ANZ01] remain future work.

Stor-Gen can generate interesting reference patterns by varying the order in which the tree
properties are generated. We illustrate this by an example. For simplicity, assume that each class
instance appears exactly once in the tree and that the tree is symmetric. Therefore, we have
a tree representing some property relationship (e.g., ancestor) and a set of class instances that
must be assigned to some node on the tree. The instances could be assigned randomly. Or the
instances could be assigned in order by either a depth-first or breadth-first traversal of the tree.
Consider the trees in Figure 3 where the numbers might refer to instances of a Person class
and the links might represent the Child-of property. Now consider a benchmark query that finds
all descendants of a randomly chosen resource (tree node). If the resource is chosen uniformly
among all class instances, we do not expect much difference between the depth-first and breadth-
first trees. But, if the resource is chosen by a Zipf distribution, depth-first and breadth-first have
different performance.

1

2 3

4 5 6 7

1

2 5

3 4 6 7

Breadth-First Tree Depth-First Tree

Figure 3: Referencing a Tree Property.

This is because a Zipf distribution chooses higher-ranked instances more frequently. For
the trees in Figure 3, assuming highest rank means 1 and lowest rank is 7, then the breadth-first
tree would tend to return instances at the top of the tree. The depth-first tree would tend to return
instances on the left side and bottom of the tree. Consequently, the benchmark query, on average,
would run longer (traverse more nodes) when run on the breadth-first tree than on the depth-first
tree. The ability to control such interactions is very useful in benchmark studies, e.g., consider
studies of caching.

Stor-Gen can generate useful sized data sets in a reasonable amount of time. For example,
100,000 Dublin Core documents of 10 properties can be generated in less than a minute on
current generation PCs when the dataset can fit in physical memory. In the future, Stor-Gen will
be modified to optimize the creation of large data sets that do not fit in physical memory.

The architecture of Stor-Gen is shown in Figure 4. First, the user provides a Stor-Gen specifi-

2 Currently, only a subset of all Chinese characters are supported.



cation file (in RDF) describing the characteristics of the generated data, in particular, the classes
and properties and distributions desired. Stor-Gen Configurator takes this specification, refer-
encing other existing ontologies if necessary, and then generates a generator hierarchy con-
taining configured class generators, each one corresponding to a class. Then the RDF Graph
Generator use the generator hierarchy to generate the RDF graph. The RDF graph can be di-
rectly pipelined to the application that uses it or be fed into RDF Model Writer to be serialized
into an RDF file.

Ontology1

Ontology2

Ontologyn

…

Stor-Gen
Specification

Generator
Hierarchy

RDF
Graph

RDF
FileStor-Gen

Configurator

RDF
Graph

Generator

RDF
Model
Writer

Figure 4: Architecture of Stor-Gen.

5.2 Stor-Gen Specification

To simplify the specification, Stor-Gen can use properties from existing ontologies. This re-
duces the amount of information a user must provide in the specification. The ontologies may
be simple vocabularies or rich OWL ontologies. For example, domain and range properties
in RDF Schema ontology determine which properties to generate for a given class. Also, the
existing OWL cardinality restrictions determine the number of property values to generate for
a class instance. Statements in the Stor-Gen specification may augment or override the exist-
ing ontology specification, e.g., despite the ontology, someone may really want their document
class instances to have multiple titles. However, the user is responsible for ensuring that property
specifications among the ontologies do not conflict with each other.

We acknowledge that our interpretation of OWL cardinality constraints in this way is not
consistent with OWL semantics. For example, suppose property X is declared as single-valued.
In OWL, the following two RDF statements are not necessarily contradictory:

Subject1 PropertyX Object1
Subject1 PropertyX Object2

In OWL, these statements are interpreted to mean Object1 and Object2 are equivalent. How-
ever, for our purposes, we interpret a cardinality constraint to mean the number of occurrences
of a particular property for a common subject. We believe this is a common case, especially for
RDF data sets derived from existing relational data sources.

The specification, which is also an RDF file, specifies which classes, among all the classes
in the ontologies, to generate and how many instances of each class to generate. For each class,
a user needs to specify which properties to generate as well as the property cardinality, property
value type and property value distribution of each property. If the property value is blank node, it
is specified in a similar way to specifying a class. Note that blank node and container structures
may be nested.

To generate a resource reference, the specification must include the cardinality of the refer-
enced class. The property value distribution then generates a number in that range. This number
is then appended to the class URI to form the resource reference. When referencing a resource
related by a tree property, we use a Zipf distribution to choose the resource.



6 Related Work

A good introduction to RDF storage subsystems and a comparative review of implementations
is available in [Bec01] [BG01]. Jena1 experimented with property tables [Rey03]. Other RDF
stores create application-specific storage schema from knowledge of the RDF Schema class
hierarchies (Forth [ACK+01], Sesame [BK01], KAON [KAO]). However, for arbitrary graphs
without RDF Schema, they simply use a triple store.

Many pattern discovery problems for semi-structured data have been defined and addressed
in the literature. [TSA+01] defines the problem of mining path expression patterns in semi-
structured text. These patterns can be useful for deciding which portion of a given data is impor-
tant. However, it only considers tree-structured HTML/XML. Mobasher et al proposed WEB-
MINER [MJHS96], a web mining system which applies data mining techniques to analyze web
server access logs. They also defined transaction models for various web mining tasks. Different
from our work, they are only interested in discovering the relationships among the accessed files
instead of document structure or query patterns.

To validate new ideas and evaluate system performance in database research, many bench-
mark systems have been developed for generating synthetic data for a broad spectrum of queries.
Techniques for efficient generation of very large relational data sets are described in [GSE +94].
This work also includes an algorithm for generating Zipfian distributions which Stor-Gen uses.
In a semi-structured data context, [ANZ01] describes a synthetic XML data generator that gen-
erates tree-structured XML data and allows for a high level of control over the characteristics
of the generated data such as element frequency distribution, tag name recursion and repetition,
etc. Another XML benchmark, XMark [SWK+01], generates XML documents and XQueries
that model real-world applications. The generated XML data conforms to some fixed schema.
Our work is different in that Stor-Gen generates graph-structured RDF statements that model
class instances and relationships among class instances.

7 Conclusion

In summary, we believe that application-specific storage schema are required to realize efficient
stores for large-scale Semantic Web applications. Also needed are tools and utilities to help de-
rive and evaluate these storage schemes. We sketch a process for deriving application-specific
storage schema for RDF and a set of tools used for this process. For RDF data analysis, we pro-
pose four types of analysis, provide algorithms for the analysis and implement these algorithms
in our Stor-Mine tool. We also describe a synthetic RDF data generator tool, Stor-Gen, that can
be used to generate RDF data sets to model real application data.

In the future, we plan to address the remaining problems of RDF mining as described in
Section 3. We will enhance the RDF data generator to generate resource references with arbitrary
class memberships. We also plan to implement other tools for use in the schema design process,
i.e. Stor-Mark and Stor-Perf, and to explore the effectiveness of our application-specific schema
design methodology.
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