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Abstract. Extracting sentiments from unstructured text has emerged
as an important problem in many disciplines. An accurate method would
enable us, for example, to mine on-line opinions from the Internet and
learn customers’ preferences for economic or marketing research, or for
leveraging a strategic advantage. In this paper, we propose a two-stage
Bayesian algorithm that is able to capture the dependencies among
words, and, at the same time, finds a vocabulary that is efficient for
the purpose of extracting sentiments. Experimental results on the Movie
Reviews data set show that our algorithm is able to select a parsimo-
nious feature set with substantially fewer predictor variables than in the
full data set and leads to better predictions about sentiment orientations
than several state-of-the-art machine learning methods. Our findings sug-
gest that sentiments are captured by conditional dependence relations
among words, rather than by keywords or high-frequency words.

1 Introduction

Traditionally, researchers have used surveys to collect a limited amount of data
in a structured form for their analyses. In recent years, the advent of the In-
ternet, and the widespread use of advanced information technologies in general,
have resulted in a surge of information that is freely available on-line in an un-

structured format. For example, many discussion groups and review sites exist
where people post their opinions about a product. The automatic understanding
of sentiments expressed within the texts of such posts could lead to a number of
new applications in the fields of marketing and information retrieval.

Researchers have been investigating the problem of automatic text catego-
rization for the past two decades. Satisfactory solutions have been found for the
cases of topic categorization and of authorship attribution; briefly, topics are
captured by sets of keywords, whereas authors are identified by their choices
about the use of non-contextual, high-frequency words. Pang et al [17] showed
that such solutions, or extensions of them, yield cross-validated accuracies and



areas under the curve (AUC) in the low 80%s when ported to sentiment extrac-
tion. We conjecture that one reason for the failure of such approaches maybe
attributed to the fact that the features used in the classification (e.g. the words)
are assumed to be pairwise independent. The goal of this paper is to present a
machine learning technique for learning predominant sentiments of on-line texts,
available in unstructured format, that:

– is able to capture dependencies among words, and
– is able to find a minimal vocabulary, sufficient for categorization purposes.

Our two-stage Markov Blanket Classifier (MBC) learns conditional depen-
dencies among the words and encodes them into a Markov Blanket Directed

Acyclic Graph (MB DAG) for the sentiment variable (first stage), and then uses
a Tabu Search (TS) meta-heuristic strategy to fine tune the MB DAG (second
stage) in order to yield a higher cross-validated accuracy. Learning dependen-
cies allows us to capture semantic relations and dependent patterns among the
words, thus approximating the meaning of sentences, with important applica-
tions for many real world applications. Further, performing the classification task
using a Markov Blanket (MB) for the sentiment variable (in a Bayesian network)
has important properties: (a) it specifies a statistically efficient prediction of the
probability distribution of the sentiment variable from the smallest subset of pre-
dictors, and (b) it provides accuracy while avoiding over-fitting due to redundant
predictors. We test our algorithm on the publicly available Movie Reviews data
set and achieve a cross-validated accuracy of 87.5% and a cross-validated AUC
of 96.85% respectively, against best performances of competing state-of-the-art
classifiers in the low 80%s. This paper is organized as follows: Section 2 surveys

related work. Section 3 provides some background about Bayesian networks,
Markov Blankets, and Tabu Search. Section 4 contains details about our pro-
posed methodology. Section 5 describes the data and presents the experimental
results. Last, Section 6 discusses of our findings and concludes.

2 Related Work on Sentiments

The problem of sentiment extraction is also referred to as opinion extraction or
semantic classification in the literature. A related problem is that of studying
the semantic orientation, or polarity, of words as defined by Osgood et al. [16].
Hatzivassiloglou and McKeown [10] built a log-linear model to predict the se-
mantic orientation of conjoined adjectives using the conjunctions between them.
Huettner and Subasic [11] hand-crafted a cognitive linguistic model for affection

sentiments based on fuzzy logic. Das and Chen [6] used domain knowledge to
manually construct lexicon and grammar rules that aim to capture the “pulse”
of financial markets as expressed by on-line news about traded stocks. They
categorized news as buy, sell or neutral using five classifiers and various voting
schemes to achieve an accuracy of 62% (random guesses would top 33%). Tur-
ney and Littman [23] proposed a compelling semi-supervised method to learn the
polarity of adjectives starting from a small set of adjectives of known polarity,



and Turney [22] used this method to predict the opinions of consumers about
various objects (movies, cars, banks) and achieved accuracies between 66% and
84%. Pang et al. [17] used off-the-shelf classification methods on frequent, non-
contextual words in combination with various heuristics and annotators, and
achieved a maximum cross-validated accuracy of 82.9% on data from IMDB.
Dave et al. [7] categorized positive versus negative movie reviews using support
vector machines on various types of semantic features based on substitutions and
proximity, and achieved an accuracy of at most 88.9% on data from Amazon and
Cnn.Net. Last, Liu et al. [14] proposed a framework to categorize emotions based
on a large dictionary of common sense knowledge and on linguistic models.

3 Theoretical Background

3.1 Bayesian Networks and Markov Blanket

A Bayesian network is a graphical representation of the joint probability distri-
bution of a set of random variables as nodes in a graph, connected by directed
edges. The orientations of the edges encapsulate the notion of parents, ancestors,
children, and descendants of any node [18, 20].

More formally, a Bayesian network for a set of variables X = {X1, ..., Xn}
consists of: (i) a network structure S that encodes a set of conditional indepen-
dence assertions among variables in X ; and (ii) a set P = {p1, ..., pn} of local
conditional probability distributions associated with each node and its parents.
Specifically, S is a directed acyclic graph (DAG) which, along with P , entails a
joint probability distribution p over the nodes.

We say that P satisfies the Markov condition for S if every node Xi in S

is independent of its non-descendants, conditional on its parents. The Markov
Condition implies that the joint distribution p can be factorized as a product
of conditional probabilities, by specifying the distribution of each node condi-
tional on its parents. In particular, for given a structure S, the joint probability
distribution for X can be written as

p(X) =

n∏

i=1

pi(Xi|pai) , (1)

where pai denotes the set of parents of Xi.
Given the set of variables X and target variable Y , a Markov Blanket (MB)

for Y is the smallest subset Q of variables in X such that Y is independent of
X\Q, conditional on the variables in Q. Intuitively, given a Bayesian network
(S, P ), the Markov Blanket for Y consists of paY , the set of parents of Y ; chY ,
the set of children of Y ; and pa chY , the set of parents of children of Y .

Example 1. Consider the two DAGs in Figure 1 and Figure 2, below. The fac-
torization of p entailed by the Bayesian network (S, P ) is

p(Y, X1, ..., X6) = C · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, X4, Y ) ·
· p(X2|X1) · p(X3|X1) · p(X6|X4) ,

(2)



where C is a normalizing constant.
The factorization of the conditional probability p(Y |X1, ..., X6) entailed by

the Markov blanket for Y corresponds to the product of those local factors in
(2) which contain the term Y , that is

p(Y |X1, ..., X6) = C′ · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3, X4, Y ) (3)

where C′ is a different normalizing constant.
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Fig. 1. Bayesian network (S, P ).
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Fig. 2. Markov Blanket for Y in (S, P ).

Different MB DAGs that entail the same factorization for p(Y |X1, ..., X6)
belong to the same Markov equivalence class. Our algorithm searches the space of
Markov equivalent classes, rather than that of DAGs, thus boosting its efficiency.
Markov Blanket classifiers have been recently rediscovered and applied to several
domains, but very few studies focus on how to learn the structure of the Markov
Blanket from data. Further, the applications in the literature have been limited
to data sets with few variables. Theoretically sound algorithms for finding DAGs
are known (e.g. see [4]), but none has been tailored to the problem of finding
MB DAGs.

3.2 Tabu Search

Tabu Search (TS) is a powerful meta-heuristic strategy that helps local search
heuristics explore the space of solutions by guiding them out of local optima [9].
It has been applied successfully to a wide variety of continuous and combinato-
rial optimization problems, and has been shown to be capable of reducing the
complexity of the search process and accelerating the rate of convergence.

The basic Tabu Search starts with a feasible solution and iteratively chooses
the best move, according to a specified evaluation function, while assuring that
solutions previously generated are not revisited in the short-term. This is ac-
complished by keeping a tabu list of restrictions on possible moves, updated at
each step, which discourage the repetition of selected moves. Typically tabu re-
strictions are based on a short-term memory function, called the tabu tenure, to
prevent loops in the search, but intermediate and long-term memory functions
may also be adopted to intensify and diversify the search.



4 Proposed Methodology: Two-Stage MB Classifier

4.1 1st Stage: Learning Dependencies with an Initial MB DAG

The first stage generates an initial MB for Y from the data. This procedure
involves the following: It begins by selecting those variables in {X1, ..., XN}
that are associated with Y within two hops in the graphical representation;
that is, it finds potential parents and children (LY ) of Y , and potential parents
and children (∪iLXi

) of nodes Xi ∈ LY , using conditional independence tests,
representing adjacencies by undirected edges. At this point, the list Y ∪LY ∪iLXi

is a skeleton (an undirected graph) which contains the MB for Y ( See above the
precise definition of MB(Y ) in terms of paY , chY , and pa chY .) The algorithm
then orients the edges using six edge orientation rules described in Bai et al.
[1]. Finally , it prunes the remaining undirected edges and bi-directed edges to
avoid cycles, puts them in a list L for Tabu Search, and returns the MB DAG.

The core of the first stage lies in the search for the nodes (LY ) associated with
Y , and for those (∪iLXi

) associated with the nodes in LY , based on causal dis-
covery theory. [18, 20] This search is non trivial and is performed by two recursive
calls to the function findAdjacencies(Y ), as shown in figure 3: independence
tests between Y and each Xi are performed to identify a list (AY ) of variables
associated to Y ; then, for Xi ∈ AY and for all distinct subsets S ⊂ {AY \Xi}

d,
where d controls the size of S, conditional independence tests between Y and Xi
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Fig. 3. Illustration of findAdjacencies (Y ). AY and AXi
are shown.

given S are performed to remove unfaithful associations; For more details about
unfaithful associations and distribution see Spirtes et al. [20]. Then, for all pairs
(Xi, Xj)i6=j , independence tests are performed to identify lists of variables (AXi

,
i=1,...,N) associated to each Xi; last, for Xi ∈ AY and for all distinct subsets
S ⊂ {AXi

}d, conditional independence tests between Y and each Xi given S are
again performed to prune unfaithful associations.

4.2 2nd Stage: Tabu Search to Improve the MB Classifier

Tabu Search (TS) is then applied to improve the initial MB DAG. Our algorithm
searches for solutions in the space of logical Markov equivalence classes, instead



of searching the space of MB DAGs; that is, moves that yield Markov Blankets
within the same Markov equivalent class are not considered, and moves that
result in cyclic graphs are not valid moves.

Briefly, four kinds of moves are allowed in the TS procedure: edge addition,
edge deletion, edge reversal and edge reversal with node pruning. At each stage,
and for each allowed move, the corresponding MB DAG is computed, its con-
ditional probability factored, its predictions scored, and the best move is then
selected and applied. Best solution and best score at each step are tracked. The
tabu list keeps a record of m previous moves, so that moves in the tabu list
will not be repeated till their corresponding tabu tenure expires. Details can be
found in [2].

4.3 A Sketch of the Algorithm

We present a sketch of the algorithm below. The parameters are: D, a data
set with N variables and K examples; Y , the class variable; d, the maximum
number of nodes for the conditional independence tests; α, the significance level
for the G2 statistical independence tests (for a definition of G2 see [20]). The
final output is the graphical Markov Blanket structure (MB) for Y .

InitialMBsearch (Data D, Target Y , Depth d, Significance α)
1. LY = findAdjacencies (Y , {X1, ..., XN}, d, α)
2. for Xi ∈ LY

2.1. LXi
= findAdjacencies (Xi, {X1, ..., XN}\Xi, d, α)

3. G = orient (Y ∪ LY ∪i LXi
)

4. {MB DAG, L} = prune (G)
5. return {MB DAG, L}

TabuSearch (Data D, Target Y )
1. init (bestSolution = currentSolution = MB DAG, bestScore = 0, ...)
2. repeat until (bestScore does not improve for k consecutive iterations)

2.1. form candidateMoves for currentSolution
2.2. find bestMove among candidateMoves according to function score

2.3. if (bestScore < score (bestMove))
2.3.1. update bestSolution and bestScore by applying bestMove

2.3.2. add bestMove to tabuList // not re-considered in the next t iterations
2.4. update currentSolution by applying bestMove

3. return bestSolution // an MB DAG

findAdjacencies (Node Y , List of Nodes L, Depth d, Significance α)
1. AY := {Xi ∈ L: Xi is dependent of Y at level α}
2. for Xi ∈ AY and for all distinct subsets S ⊂ {AY \Xi}

d

2.1. if Xi is independent of Y given S at level α
2.2. then remove Xi from AY

3. for Xi ∈ AY

3.1. AXi
:= {Xj ∈ L: Xj is dependent of Xi at level α, j 6= i}

3.2. for all distinct subsets S ⊂ {AXi
}d

3.2.1. if Xi is independent of Y given S at level α

3.2.2. then remove Xi from AY

4. return AY



5 Experiments

5.1 Movie Reviews Data

We tested our method on the data set used in Pang et al [17]. This data set
contains approximately 29,000 posts to the rec.arts.movies.reviews newsgroup
archived at the Internet Movie Database (IMDb). The original posts are available
in the form of HTML pages. Some pre-processing was performed to produce the
version of the data we used. Specifically, only reviews where authors’ ratings were
expressed explicitly (either by stars or by numerical values) were selected. Then
explicit ratings were removed and converted into one of three categories: positive,
negative, or neutral. Finally, 700 positive reviews and 700 negative reviews, which
the authors of the corpus judged to be more extreme, were selected for our study.
Various versions of the data are available on-line [24].

5.2 Feature Definition

In our study, we used words as features, where words are strings of letters en-
closed by non-letters to the left and to the right. Note that our definition excludes
punctuation sign even though exclamation signs and question marks may be
helpful for our task. Intuitively the task of sentiment extraction is a hybrid task
between authorship attribution and topic categorization; we look for frequent
words, possibly not related to the context, that help express lexical patterns,
as well as low frequency words which may be specific to few review styles, but
very indicative of an opinion. We considered all the words that appeared in more
than 8 documents as our input features, whereas words with lower counts were
discarded since they appear too rarely to be helpful in the classification of many
reviews. We were left with a total number of 7,716 words, as input features. In
our experiments, we represented each document as a vector, X := [X1, ..., X7716],
of the size of the initial vocabulary, where each Xi is a binary random variable
that takes the value of 1 if the ith word in the vocabulary is present in the
document and the value of 0 otherwise.

5.3 Experimental Set-Up

In order to compute unbiased estimates for AUC and accuracy we used a nested,
stratified, five-fold cross-validation scheme. The parameters in our experiments
were the scoring criteria, the maximum size of the condition set to consider for
conditional independence tests when learning the MB DAG (i.e. the depth d),
and the α level to decide whether to accept or reject each of these tests. We
explored 24 configurations of parameter combinations, shown in Table 1. We
found the dominant configuration of the parameters on the training data and
estimated the performance on the testing data, according to the (outer) five-fold
cross-validation scheme. In order to find this configuration, within each fold i, we
further split the training data in two (TRi1 and TRi2), trained the MB classifier
on TRi1 for each parameter configuration, and tested the performance on TRi2.



Table 1. Experimental Parameter Configurations.

Parameters Scoring Criteria Depth of Search Alpha C.V. Folds

Configurations AUC 1, 2, 3 0.001, 0.005, 5-fold
Accuracy 0.01, 0.05

The configuration that led to the best MB, in terms of accuracy on TRi2 across
all five folds i = 1, ..., 5, was chosen as the best configuration.

5.4 Results and Analysis

We compared the performances of our two-stage MB classifier with those of four
widely used classifiers: a näıve Bayes classifier based on the multivariate Bernoulli
distribution with Laplace prior for unseen words, discussed in Nigam et al. [15],
a support vector machine (SVM) classifier along with a TF-IDF re-weighting of
the vectors of word counts, discussed by Joachims [12], an implementation of the
voted Perceptron, discussed in Freund and Schapire [8], and a maximum entropy
conditional random field learner, introduced by Lafferty et al. [13].

Table 2 compares the two-stage MBC with the performances of the other
classifiers using the whole feature set as input. As we expected, more features did
not necessarily lead to better results, as the classifiers were not able to distinguish
discriminating words from noise. In such a situation we also expected the SVM
with TFIDF re-weighting and the voted perceptron to perform better than the
other classifiers. As shown in table 2, the two-Stage MB classifier selects 22
relevant words out of 7,716 words in the vocabulary. The feature reduction ratio
is 99.71%; the cross-validated AUC based on the 22 words and their dependencies
is 96.85%, which is 14.3% higher than the best of the other four methods; the
corresponding cross-validated accuracy is 87.5%, which is 3.5% higher than the
best of the other four methods. We notice that the two-Stage MB classifier is

Table 2. Average performances on the whole feature set.

Method AUC Accuracy # Selected Size
Method (%) (%) Features Reduction

Two-stage MB 96.85 87.52 22 99.71%
Näıve Bayes 82.61 66.22 7716 0%
SVM + TFIDF 81.32 84.07 7716 0%
Voted perceptron 77.09 70.00 7716 0%
Max. entropy 75.79 79.43 7716 0%

able to automatically identify a very discriminating subset of features (or words)



that are relevant to the target variable (Y , the label of the review). Specifically,
the selected features are those that form the Markov Blanket for Y . Further, the
two-Stage MB classifier yields the best results in terms of both cross-validated
AUC and accuracy. Other methods perform worse on the whole feature set and
need to be paired with a variable selection strategy.

Table 3 compares the performance of the two-stage MBC with others classi-
fiers using the same number of features selected by information gain. We notice
that feature selection using information gain criterion does not tell us how many
features have to be selected, but rather allows us to rank the features from most
to least discriminating instead. Again, the two-Stage MB classifier dominates the
other methods both in terms of AUC and accuracy, though it is not clear whether
the extra performance comes form the different feature selection strategies, or
from the dependencies encoded by the MB.

Table 3. Average performances on the same number of features.

Method AUC Accuracy # Selected Size
Method (%) (%) Features Reduction

Two-stage MB 96.85 87.52 22 99.71%
Näıve Bayes 78.85 72.07 22 99.71%
SVM + TFIDF 67.30 70.43 22 99.71%
Voted perceptron 78.68 71.71 22 99.71%
Max. entropy 68.42 71.93 22 99.71%

To investigate this point, in Table 4 we compare the performance of the two-
stage MBC with others classifiers using the same exact features. We find that
a small part of the difference between the accuracy of the MBC and that of
other classifiers in Table 3 arises from the fact that we selected features using
information gain; in fact all the four competing classifiers performed better on
the set of features in the Markov blanket. We also find that the major portion
of such differences is due to the MB classification method itself. We attribute

Table 4. Average performances on the same exact features.

Method AUC Accuracy # Selected Size
Method (%) (%) Features Reduction

Two-stage MB 96.85 87.52 22 99.71%
Näıve Bayes 81.81 73.36 22 99.71%
SVM + TFIDF 69.47 72.00 22 99.71%
Voted perceptron 80.61 73.93 22 99.71%
Max. entropy 69.81 73.44 22 99.71%



the jump in the accuracy and AUC to the fact that the MB classifier encodes
and takes advantage of conditional dependencies among words, which all other
methods fail to capture.

Finally, in Figure 4 below we show the best MB DAG learned by the two-
Stage MB classifier. All the directed edges are robust over at least 4 out of five
cross validation runs; the variation is very small. The structure of the final MB
DAG does not indicate independence of the words conditional on the sentiment
variable, which is the strong assumption underlying all the competing classifiers.

� � � � �

� � � � � �  ! "  #

$ " % & $ & � �

! � $ $

� � � $ ! � � � � & !

�  % �   '

� � � &

� � � ( " ! � � $ " ! ( & � % & ) �

* & � � * & * � � � + $ &

* � ' + &

$ � � # , � + $ &

$ � * &

& % % & ) � " - &

+ � � ,+ � � "  #

+ $ �  !

+ � !

� � % � $

. &  � " * &  �

Fig. 4. Best Fitting MB DAG for the Movie Dataset.

These experiments, as well as more results we have obtained on other medi-
cal data sets [1], suggest that for problems where the independence assumption
is not appropriate, the two-stage MB classifier is a better choice and leads to
more robust predictions by: (i) selecting statistically discriminating features for
the class variable, and (ii) learning a more realistic model that allows for de-
pendencies among the predictors. Further, according to the empirical findings in
Pang et al [17], the baseline accuracy for human-selected vocabularies can be set
at about 70%. Comparing the human intuition to our fully automated machine
learning technique (two-stage MBC), we observe a non-negligible improvement.

6 Discussion and Conclusions

The two-stage Markov Blanket classifier that we have proposed in this paper

– is able to capture dependencies among words, and
– is a fully automated system able to select a parsimonious vocabulary, cus-

tomized for the classification task in terms of size and relevant features.

Overall, the two-Stage MB classifier significantly outperforms the four base-
line methods and is able to extract the most discriminating features for classifi-
cation purposes. The main drawbacks of the competing methods are that they



cannot automatically select relevant features, and they cannot encode the depen-
dencies among them. While the first issue is easily overcome by combining the
classifiers with off-the-shelf feature selection methods, the second issue cannot
be addressed. In fact, it is a direct consequence of the assumption of pairwise
independence of features underlying all the competing methods. Further, many
techniques have been tried in order to automatically capture the way people ex-
press their opinions, including models for the contextual effects of negations, the
use of feature frequency counts instead of their presence or absence, the use of
different probability distributions for different positions of the words in the text,
the use of sequences of words or N -grams, the combination of words and part of
speech tags, noun-phrase chunks, and so on. However, the empirical results in
terms of prediction accuracy and AUC always remain in the same ballpark.

We performed three sets of experiments to compare the methods along vari-
ous dimensions, in Tables 2, 3, 4. In particular, Table 4 shows that given the same

exact features, which were identified by the MBC as belonging to the Markov
blanket, the MBC leads to significantly higher AUC and accuracy, thus suggest-
ing that taking into account dependencies among words is crucial to perform
sentiment extraction. The comparison of results of Table 3 and Table 4 suggests
that information gain is not the best criterion to select discriminating variables,
but the statistical tests that measure association among features and causal rea-
soning are better tools to perform the selection. The findings of Bai et al. [1],
who obtained similar results on four more data sets form different domains, add
strength to our claims. We acknowledge that these are experimental results, and
other selection strategies and data sets may tell different stories.

In conclusion, we believe that in order to capture sentiments we have to
go beyond the search for richer feature sets and the independence assumption.
Rather we need to capture those elements of the text that help identify context
and meaning. We believe that a robust model, which would naturally lead to
higher performance, is obtained by encoding dependencies among words, and by
actively searching for a better dependency structure using heuristic and optimal
strategies. Finally, the analysis of the relations among words underlying accurate
MBC DAGs may lead to a better understanding of the way contextual meaning
arises from the occurrence of words.
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