
Ranking the Answer Trees of Graph Search by both
Structure and Content

Ming Zhong
State Key Laboratory of Software Engineering,

Computer School, Wuhan University
Luojiashan

Wuhan, China
clock@whu.edu.cn

Mengchi Liu
School of Computer Science, Carleton University

1125 Colonel By Drive
Ottawa, Canada

mengchi@scs.carleton.ca

ABSTRACT
Keyword search on graphs aims to find minimum connected trees
containing the keywords. Normally, the answer trees are ranked by
their topological structures. However, this basic rankingscheme
does not distinguish answer trees well when many answer trees
have the same structures or contain redundant information.This pa-
per proposes a novel ranking scheme, which combines both structure-
based and content-based ranking factors. It can effectively priori-
tize the answer trees with more valuable content and punish the
ones with redundant information. Meanwhile, it will not reduce
the efficiency of top-k search algorithms by performing an edge
re-weighting process offline.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Theory

Keywords
Graph, Search, Ranking

1. INTRODUCTION
A growing number of graph-structured data repositories have

been available in recent years, such as DBPedia1, Yago2, Free-
Base3 and etc. Consequently, keyword search on such data graphs
becomes a popular research topic. The search results are normal-
ly defined asminimum connected trees in the graph. In this way,
meaningful information can be captured when there are no single
entities (i.e., vertices in the graph) matched by all keywords, which
is a common scene because of database normalization. The answer
1http://dbpedia.org/
2http://www.mpi-inf.mpg.de/yago-naga/yago/
3http://www.freebase.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JIWES SIGIR 2012 workshop, August 16, Portland, Oregon, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

a1 Halevy

a2 Dong

p2 Indexing Dataspaces

p1
Pay-as-you-go User Feedback

c2 SIGMOD 2007

c1 SIGMOD 2008

for Dataspace Systems

u1 Washington University

a3 Doan

p3 Community Information Management

p4
DISCOVER: Keyword Search

in Relational Databases

p5
Keyword Proximity Search

on XML Graphs

a4 Hristidis

c4 ICDE 2003

c3 VLDB 2002

j1
IEEE Data Eng. Bull.

2006

1.5

1

0.8

1.5

0.8

0.8

0.8

0.8

0.8

1.5

1.5

1

1

2

1.5

1

Figure 1: An example graph.

trees are scored and ranked by theircompactness, since the com-
pacter answer trees are generally considered to be more relevant to
the users’ information needs.

However, ranking only by tree compactness is too coarse-grained
sometimes, especially for large-scale graphs where a largenumber
of answer trees with the same topological structures can be found.
For example, consider search the papers coauthored by “Tom”and
“Jerry”. The typical answer trees are composed by a paper vertex
as root and two author vertices as leaves. There could be manysuch
answer trees of different combinations of papers and authors. Sure-
ly we would like to see that the trees containing more important
papers and authors are ranked higher.

Therefore, we also need to consider the content-based ranking
factors. Previous works (e.g., [1, 7]) have dealt with the combina-
tion of tree compactness and keyword relevance, which is measured
by the classical tf·idf function. However, this “dynamical” scoring
function usually leads to inefficiency in the sense of top-k search
(e.g., [2, 3, 5, 9–11]). Moreover, if the vertex labels only contain
a few of terms like in the graph illustrated in Figure 1, keyword
relevance rarely contributes to ranking.

Another issue has to be considered is the redundant information
among answer trees. Many answer trees could be composed of al-
most same vertices. However, existing solutions (e.g., [5,6]) either
unreasonably get rid of too many meaningful answers or are very
inefficient.

As a result, we focus on ranking answer trees by both topolog-
ical structure and “static” content in this paper. We use thevertex
weight to represent the importance of a vertex based on its con-

a1 a2 Dong

p2 Indexing Dataspaces

c2 SIGMOD 2007

Halevy 1.5

0.8 0.8

(a) The best MCT answer.

1.5

p1

a1 Halevy

p2 Indexing Dataspaces

a2 Dong c1 SIGMOD 2008

Feedback for

Pay-as-you-go User

Dataspace Systems
0.8

0.8
0.8

(b) Another MCT answer.

Figure 2: Answer trees to query {Halevy Dong SIGMOD}.

tent. The principle challenge is how to integrate two types of rank-
ing factors uniformly so that the search algorithm does not need
to enumerate all answers for identifying the top-k answers. To ad-
dress this problem, we propose a novel ranking scheme, whichhas
two features: 1) we combine the content-based vertex weights into
edge weights before search so that the monotonicity of structure-
based scoring function is maintained and thus the top-k search is
still efficient; 2) we incrementally punish the produced answer trees
sharing the same root for avoiding redundant information, which is
more efficient than the previous isomorphism testing approach [5].

The rest of this paper is organized as follows. Section 2 intro-
duces the data model and query model. Section 3 presents our
ranking scheme. Section 4 reports a simple evaluation. Lastly, we
conclude in Section 5.

2. DATA AND QUERY MODELS
We formally represent a data graph asG = (V, E , Σ, ζ, ωv, ωe),

where

• V is a set of vertices;

• E ⊆ V × V is a set of edges, which could be either directed
or undirected;

• Σ is a set of terms;

• ζ is a vertex label function, and for each vertexv ∈ V,
ζ(v) ⊆ Σ;

• ωv is a vertex weight function which assigns a positive weight
ωv(v) to each vertexv ∈ V;

• ωe is an edge weight function which assigns a positive weight
ωe(e) to each edgee ∈ E .

A query Q is a set of keywords. For a vertexv, if ∃t ∈ Q
such thatt ∈ l(v), v is called amatched vertex of keywordt. The
answers toQ are minimum connected trees, which are connected
trees ofG containing at least one matched vertex of each keyword.
Moreover, any proper subtrees of them do not contain (the matched
vertices of) all keywords. For an answer treea, let root(a) be its
root andrkpath(a, t) be the path betweenroot(a) and the nearest
matched vertex of keywordt in a.

For example, consider the graph in Figure 1. Two answer trees
to a query {Halevy Dong SIGMOD} are illustrated in Figure 2(a)
and (b), respectively.

3. RANKING SCHEME
We treattree compactness as the priority of ranking answer trees,

which is a common structure-based ranking factor. Compacter trees
in which matched vertices are closer to each other are generally
considered to be better. For example, the answer tree in Figure 2(a)

is surely better than the answer tree in Figure 2(b). The previous
one exactly match the information need of user and contains no
useless information.

There are different ways of measuring tree compactness. Some
previous works (e.g., [2, 7, 8]) measure tree compactness bythe
number or total weight of edges. In that case, finding the top-k

answers can be reduced to the Group Steiner Tree Problem (GSTP),
which is NP-Complete. For supporting efficient top-k search, we
follow the root-path semantics of [6] to compute the compactness
of an answer treea to queryQ as the sum of lengths of all root-
keyword paths ina, as shown in the following equation.

score(a) =
∑

t∈Q

|rkpath(a, t)| · γ (1)

where|rkpath(a, t)| is the length of path, andγ > 1 is a redun-
dancy penalty factor. The rationale behind redundancy penalty is
that users would not like to see many answers sharing the same
information. For that, [6] permits only a single answer treeroot-
ed at a distinct vertex to be produced, which leads to loss of most
answers. [5] implements redundancy penalty by computing tree i-
somorphism between answers, which is too time-consuming. We
do not get rid of other answers having the same root, but incremen-
tally raise their scores by multiplying byγ = 1 + 0.05 · β, where
β is the number of produced answers with the same root as this
answer. Therefore, the more answers with the same root have been
produced, the more penalty this answer will receive.

For example, the scores of answer trees illustrated in Figure 2(a)
and (b) are 0.8 + 0.8 + 1.5 = 3.1 and 0 + 1.6 + 2.3 = 3.9 respective-
ly, if no other answers rooted at vertices p2 and a1 are produced.
Notice that, the answer with lower score is better under our scoring
way. So, the scores clearly indicate that the answer in Figure 2(a)
is better than the one in Figure 2(b).

Let us consider how to efficiently process a keyword query in
top-k manner under the scoring function. A keyword queryQ can
be divided into|Q| subqueries, each of which aims to enumerate
paths started from (the matched vertices of) a keywordt ∈ Q.
When a set of paths enumerated by each subquery have a same
destination vertex, they can be combined to produce an answer tree
rooted at the destination vertex. In particular, a producedanswer
tree will be checked if it should be punished for redundancy when it
is inserted to the top-k answer list. Since the score of an answer tree
(see Equation 1) is monotone with respect to the length of paths,
we can follow the line of Threshold Algorithm [4] to handle all
subqueries by enumerating paths in priority of their length. In each
iteration of main loop, a scheduler determines which subquery to
be evaluated. The discussion of detailed search algorithm is out of
the scope of this paper.

As we mentioned above, ranking only by tree compactness is
too coarse-grained to distinguish answers sometimes, since many
answer trees have the same topology structures. Therefore,we also
need the content-based ranking factors. However, the “dynamical”
content-based factor like keyword relevance will break themono-
tonicity of scoring function, and thus lead to inefficiency.Conse-
quently, we use the “static” vertex weight to represent the content
importance of vertices and further rank answers in a fine-grained
manner. The vertex weight is determined with respect to the spe-
cific applications. An example is given in Section 4.

There are two problems to be considered. First, how to combine
two types of ranking factors uniformly so that we do not need to
enumerate all answers for identifying the top-k? Second, an answer
with higher score of tree compactness is worse, but an answerwith
higher score of vertex weight should be better. It is a contradiction.

Table 1: Test graph.
|V| |E| |Σ| ω′

e(e)

DBLP 840K 1300K 95K [0.31, 0.99]

To address these two problems, we present a simple and effective
edge re-weighting mehtod as follows. The main idea is: combine
the impact of vertex weight into edge weight, and still use Equation
1 to score answers. The new edge weightω′

e(e) for e = (v, u) ∈ E
is computed as follows.

ω
′
e(e) = (1−

√

ωv(v) + ωv(u)

2 ·max{ωv(y)|y ∈ V}
) · ωe(e) (2)

Equation 2 intends to reduce edge weights with respect to the
vertices they link. The weight of an edge connecting vertices with
higher weights will shrink more, and thus answers containing this
edge (and of course the vertices it connects) will have a smaller
score, thereby being ranked higher. The balance of two measures
can be adjusted according to applications. By using Equation 1 and
2, structure-based and content-based ranking factors are seamlessly
integrated. More importantly, existing top-k search algorithms only
based on tree compactness can still be used.

4. EVALUATION
We used a graph generated from DBLP4 to do a preliminary e-

valuation. Table 1 lists the statistics of our test graph.
To properly rank the search results on DBLP graph, we first

weighted the vertices with respect to their contents. The paper ver-
tices were assigned four different initial weights, i.e., 1, 10 100,
and 1000, according to the reputation of conferences and journals
in which these papers are published. The initial weights of author
vertices were all set as 1, since there is no objective way of judging
the importance of authors. Then, the weights of vertices were com-
puted iteratively by using the following Equation 3 in a PageRank
manner, until all vertex weights did not change anymore.

ωv(v) = α ·
init(v)

∑

u∈V
init(u)

+ (1− α) ·
∑

u∈V

ωv(u)

degree(u)
(3)

whereinit(v) is the initial weight of vertexv, degree(v) is the
number of edges connected withv, andα is a factor to adjust the
proportion of two contributions to the final weight, i.e., initial self
weight and incoming weights from connected vertices. In this way,
the authors of important papers will become weighter than others.
So, the final weights of all vertices became balanced.

There were two types of edges, “write” and “cite”. We simply
set the initial weights of all write edges as 1.0 and cite edges as 0.8,
since cite is a weaker relationship than write. Then, the final weight
of an edge was computed by using Equation 2 that reduces its initial
weight with respect to the weights of two vertices connectedby it.
As a result, the final weights of all edges were in a range from 0.31
to 0.99. The weight of an edge connecting two important vertices
with higher weights will shrink more, and thus answers containing
this edge (and of course the vertices connected by it) have smaller
scores and thereby are ranked higher. Hence, the top-k answers
under such a ranking scheme would be more meaningful to users.

We built a collection of keyword queries to examine ranking
effect. By analyzing the overall search results, we observed that
the search results were indeed improved by re-weighting theedges
4http://www.informatik.uni-trier.de/ ley/db/

with respect to vertex weights reflecting content. For the test queries,
most top answers contained the influential authors or paperspub-
lished on the top-tier conferences or journals, so that we can easily
get the most important information from the top down.

Moreover, the redundancy penalty worked well too. For exam-
ple, a keyword query {X rule mining}, where X was a common
family name, was posed on DBLP to search authors named X and
doing research on rule mining. Although the author in the top-1
answer published a lot of papers about rule mining, in other words,
many good answers about this author could be produced, thesean-
swers did not occupy the whole top-k list due to redundancy penal-
ty, and we still found other authors there.

5. CONCLUSION
In this paper, we study the problem of ranking the answer trees

of graph search. We propose a novel ranking scheme that integrates
structure-based and content-based factors together. It can improve
the search results by updating the edge weights according tothe
weights of vertices they connect, and meanwhile does not cause
any delay to existing top-k search algorithms. Moreover, it also
has a simple and effective way, namely, punish the answers with
the same root to avoid redundant information.

6. ACKNOWLEDGMENTS
Supported by the China Postdoctoral Science Foundation funded

Project (No. 20100480869).

7. REFERENCES
[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective xml

keyword search with relevance oriented ranking. InProc.
ICDE, pages 517–528, 2009.

[2] G. Bhalotia, A. Hulgeriy, C. Nakhez, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using banks. InProc. ICDE, pages 431–440, 2002.

[3] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding top-k min-cost connected trees in databases. InProc.
ICDE, pages 836–845, 2007.

[4] R. Fagin. Combining fuzzy information from multiple
systems. InProc. PODS, pages 1–10, 1998.

[5] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs. InProc. SIGMOD,
pages 927–940, 2008.

[6] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: Ranked
keyword searches on graphs. InProc. SIGMOD, pages
305–316, 2007.

[7] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
ir-style keyword search over relational databases. InProc.
VLDB, pages 850–861, 2003.

[8] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on xml graphs. InProc. ICDE, pages
367–378, 2003.

[9] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. InProc. SIGMOD,
pages 505–516, 2005.

[10] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k
answers in keyword proximity search. InProc. PODS, pages
173–182, 2006.

[11] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Retrieving
and organizing web pages by “information unit”. InProc.
WWW, pages 230–244, 2001.

