Ranking the Answer Trees of Graph Search by both
Structure and Content

Ming Zhong
State Key Laboratory of Software Engineering,
Computer School, Wuhan University
Luojiashan
Wuhan, China
clock@whu.edu.cn

ABSTRACT

Keyword search on graphs aims to find minimum connected trees
containing the keywords. Normally, the answer trees arkatiby
their topological structures. However, this basic rankscheme
does not distinguish answer trees well when many answes tree
have the same structures or contain redundant informafiais.pa-

per proposes a novel ranking scheme, which combines boittste-
based and content-based ranking factors. It can effegtiv@bri-

tize the answer trees with more valuable content and puhish t
ones with redundant information. Meanwhile, it will not tee

the efficiency of topk search algorithms by performing an edge
re-weighting process offline.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Theory

Keywords
Graph, Search, Ranking

1. INTRODUCTION

A growing number of graph-structured data repositorieseshav
been available in recent years, such as DBF‘ed'{agcf, Free-

Mengchi Liu

School of Computer Science, Carleton University

1125 Colonel By Drive
Ottawa, Canada
mengchi@scs.carleton.ca

Community Information Management |

0.8
23] _ooan |

15
|EEE Data Eng. Bull.
2006

15 |P3|

Pay-as-you-go User Feedback
pl

for Dataspace Systems

DISCOVER: Keyword Search

in Relational Databases

1
Indexing Dataspaces |

1

15

c2| SIGMOD |2007

Washington University |

Keyword Proximity Search
p5

on XML Graphs

1.5

L]

Figurel: An example graph.

trees are scored and ranked by theimpactness, since the com-
pacter answer trees are generally considered to be movanete
the users’ information needs.

However, ranking only by tree compactness is too coarsierggta
sometimes, especially for large-scale graphs where a tangder
of answer trees with the same topological structures caonedt
For example, consider search the papers coauthored by “@ach”
“Jerry”. The typical answer trees are composed by a papéewer
as root and two author vertices as leaves. There could be suaiy

Bas€ and etc. Consequently, keyword search on such data graphsanswer trees of different combinations of papers and asitfRure-

becomes a popular research topic. The search results analror
ly defined asminimum connected trees in the graph. In this way,
meaningful information can be captured when there are ngiesin
entities (i.e., vertices in the graph) matched by all keydspwhich

is a common scene because of database normalization. Twerans

http://dbpedia.org/
2http://www.mpi-inf.mpg.de/yago-nagalyago/
3http://www.freebase.com/

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

JIWES SIGIR 2012 workshop, August 16, Portland, Oregon, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ly we would like to see that the trees containing more impurta
papers and authors are ranked higher.

Therefore, we also need to consider the content-basedngnki
factors. Previous works (e.g., [1, 7]) have dealt with thmbma-
tion of tree compactness and keyword relevance, which isured
by the classical tfdf function. However, this “dynamical” scoring
function usually leads to inefficiency in the sense of kopearch
(e.g., [2,3,5,9-11]). Moreover, if the vertex labels onbntain
a few of terms like in the graph illustrated in Figure 1, keydo
relevance rarely contributes to ranking.

Another issue has to be considered is the redundant infamat
among answer trees. Many answer trees could be composed of al
most same vertices. However, existing solutions (e.g6])®ither
unreasonably get rid of too many meaningful answers or ang ve
inefficient.

As a result, we focus on ranking answer trees by both topolog-
ical structure and “static” content in this paper. We usevirgex
weight to represent the importance of a vertex based on its co

is surely better than the answer tree in Figure 2(b). Theiqusv
08 one exactly match the information need of user and contains n

p2[Indexing Dataspaces Pay-as-yougo User useless information.
08 08 p1 Feedback for There are different ways of measuring tree compactnesseSom
[aa] etew |19 [a2[ong | o8 Datasr;ace Systems previous works (e.g., [2, 7, 8]) measure tree compactnesthéy
TS (2] ooms | B == ED number or total weight of edges. In that case, finding theitop-
answers can be reduced to the Group Steiner Tree ProblenR)GST
(a) The best MCT answer. (b) Another MCT answer. which is NP-Complete. For supporting efficient thsearch, we
follow the root-path semantics of [6] to compute the compess
Figure2: Answer tressto query {Halevy Dong SIGMOD}. of an answer tree to queryQ as the sum of lengths of all root-

keyword paths iz, as shown in the following equation.

tent. The principle challenge is how to integrate two typesok-
ing factors uniformly so that the search algorithm does restch
to enumerate all answers for identifying the tognswers. To ad-

dress this problem, we propose a novel ranking scheme, vaish where |rkpath(a,t)| is the length of path, ang > 1 is a redun-

score(a) = Z |rkpath(a,t)| -~y 1)
teQ

two features: 1) we combine the content-based vertex weigta dancy penalty factor. The rationale behind redundancy Ipetsa
edge weights before search so that the monotonicity oftsifeC that ysers would not like to see many answers sharing the same
based scoring function is maintained and thus thektgearch is information. For that, [6] permits only a single answer treet-

still efficient; 2) we incrementally punish the producedwestrees ed at a distinct vertex to be produced, which leads to lossastm
sharing the same root for avoiding redundant informatidmictvis answers. [5] implements redundancy penalty by computiee itr
more efficient than the previous isomorphism testing apT¢a]. somorphism between answers, which is too time-consuming. W

The rest of this paper is organized as follows. Section Dintr g not get rid of other answers having the same root, butinere
duces the data model and query model. Section 3 presents OUkg|ly rajse their scores by multiplying by = 1 + 0.05 - 3, where

ranking scheme. Section 4 reports a simple evaluation Iy, &g B is the number of produced answers with the same root as this
conclude in Section 5. answer. Therefore, the more answers with the same root fesre b
produced, the more penalty this answer will receive.
2. DATA AND QUERY MODELS For example, the scores of answer trees illustrated in Eig(a)
We formally represent a data graph@s (V, &, 3, ¢, we, we), and (b) are 0.8 +0.8 +1.5=3.1and 0 + 1.6 + 2.3 = 3.9 respective-
where ly, if no other answers rooted at vertices p2 and al are pemtiuc
Notice that, the answer with lower score is better under oarisg
e Vis aset of vertices; way. So, the scores clearly indicate that the answer in Eig(a)

is better than the one in Figure 2(b).
e £ CV x Visasetof edges, which could be either directed Let us consider how to efficiently process a keyword query in
or undirected; top-« manner under the scoring function. A keyword quérgan
be divided into|Q| subqueries, each of which aims to enumerate
paths started from (the matched vertices of) a keyword Q.
e (is a vertex label function, and for each vertexc V, When a set of paths enumerated by each subquery have a same
() C 3 destination vertex, they can be combined to produce an arissee
rooted at the destination vertex. In particular, a produaesiver
e w, is a vertex weight function which assigns a positive weight tree will be checked if it should be punished for redundanhgmit

wy (v) to each vertexw € V; is inserted to the top-answer list. Since the score of an answer tree
(see Equation 1) is monotone with respect to the length dfspat
we can follow the line of Threshold Algorithm [4] to handld al
subqueries by enumerating paths in priority of their lengtteach
iteration of main loop, a scheduler determines which subqtee
be evaluated. The discussion of detailed search algoritouti of
the scope of this paper.

As we mentioned above, ranking only by tree compactness is
too coarse-grained to distinguish answers sometimese siany
answer trees have the same topology structures. Therefer@so
need the content-based ranking factors. However, the fdicz”
content-based factor like keyword relevance will breakriano-
tonicity of scoring function, and thus lead to inefficienconse-
quently, we use the “static” vertex weight to represent thetent
importance of vertices and further rank answers in a fineagca
manner. The vertex weight is determined with respect to piee s
cific applications. An example is given in Section 4.

e Y is aset of terms;

e w, is an edge weight function which assigns a positive weight
we(e) to each edge € £.

A query Q is a set of keywords. For a vertex if 3t € O
such that € [(v), v is called amatched vertex of keywordt. The
answers toQ are minimum connected trees, which are connected
trees ofG containing at least one matched vertex of each keyword.
Moreover, any proper subtrees of them do not contain (thetmadt
vertices of) all keywords. For an answer tredet root(a) be its
root andrkpath(a,t) be the path betweervot(a) and the nearest
matched vertex of keywordin a.

For example, consider the graph in Figure 1. Two answer trees
to a query {Halevy Dong SIGMOD} are illustrated in Figure 2(a
and (b), respectively.

3. RANKING SCHEME There are two problems to be considered. First, how to cobin
We treattree compactness as the priority of ranking answer trees, two types of ranking factors uniformly so that we do not nezd t
which is a common structure-based ranking factor. Comp#etes enumerate all answers for identifying the tbp-Second, an answer

in which matched vertices are closer to each other are ggnera Wwith higher score of tree compactness is worse, but an angitrer
considered to be better. For example, the answer tree imé=R{a) higher score of vertex weight should be better. It is a caiittion.

Table 1. Test graph.
| [VI [[TS wile) |
[DBLP [840K | 1300K | 95K [[0.31, 0.99]]

To address these two problems, we present a simple andegfect
edge re-weighting mehtod as follows. The main idea is: cambi
the impact of vertex weight into edge weight, and still usediipn
1 to score answers. The new edge weighte) for e = (v,u) € €
is computed as follows.

we(e) = (1 — \/

Equation 2 intends to reduce edge weights with respect to the
vertices they link. The weight of an edge connecting vestiwéh
higher weights will shrink more, and thus answers contgjitims
edge (and of course the vertices it connects) will have alsmal
score, thereby being ranked higher. The balance of two messu
can be adjusted according to applications. By using Equdtiand
2, structure-based and content-based ranking factoreanalessly
integrated. More importantly, existing tdpsearch algorithms only
based on tree compactness can still be used.

we (V) + wo ()
2 -maz{wy(y)ly € V}

)-wele) (2)

4. EVALUATION

We used a graph generated from DELtB do a preliminary e-
valuation. Table 1 lists the statistics of our test graph.

To properly rank the search results on DBLP graph, we first
weighted the vertices with respect to their contents. Thepeer-
tices were assigned four different initial weights, i.e.,10 100,
and 1000, according to the reputation of conferences andatsi
in which these papers are published. The initial weightsutifiar
vertices were all set as 1, since there is no objective waydtfing
the importance of authors. Then, the weights of vertice®wem-
puted iteratively by using the following Equation 3 in a PRgak
manner, until all vertex weights did not change anymore.

- init(v)
> ey nit(u)

wy (1)

degree(u)

wo (v) ®)

+(1—o¢)-z
ueV

whereinit(v) is the initial weight of vertexv, degree(v) is the
number of edges connected withand« is a factor to adjust the
proportion of two contributions to the final weight, i.e.jtial self
weight and incoming weights from connected vertices. |g iy,
the authors of important papers will become weighter thaenst
So, the final weights of all vertices became balanced.

There were two types of edges, “write” and “cite”. We simply
set the initial weights of all write edges as 1.0 and cite edgge0.8,
since cite is a weaker relationship than write. Then, thé firéght
of an edge was computed by using Equation 2 that reducegi#s in
weight with respect to the weights of two vertices connetigd.

As a result, the final weights of all edges were in a range fra@t 0
to 0.99. The weight of an edge connecting two important sesti
with higher weights will shrink more, and thus answers cioritg

this edge (and of course the vertices connected by it) haaierm
scores and thereby are ranked higher. Hence, thé: tapswers
under such a ranking scheme would be more meaningful to.users

We built a collection of keyword queries to examine ranking
effect. By analyzing the overall search results, we obskthat
the search results were indeed improved by re-weightingdges

4http://www.informatik.uni-trier.de/ ley/db/

with respect to vertex weights reflecting content. For tsedeeries,
most top answers contained the influential authors or pgpérs
lished on the top-tier conferences or journals, so that wieeeaily
get the most important information from the top down.

Moreover, the redundancy penalty worked well too. For exam-
ple, a keyword query {X rule mining}, where X was a common
family name, was posed on DBLP to search authors named X and
doing research on rule mining. Although the author in theXop
answer published a lot of papers about rule mining, in othedg
many good answers about this author could be produced, dmese
swers did not occupy the whole tdplist due to redundancy penal-
ty, and we still found other authors there.

5. CONCLUSION

In this paper, we study the problem of ranking the answestree
of graph search. We propose a novel ranking scheme thatatésg
structure-based and content-based factors togethem ihgarove
the search results by updating the edge weights accorditigeto
weights of vertices they connect, and meanwhile does natecau
any delay to existing top- search algorithms. Moreover, it also
has a simple and effective way, namely, punish the answets wi
the same root to avoid redundant information.

6. ACKNOWLEDGMENTS

Supported by the China Postdoctoral Science Foundatiatetlin
Project (No. 20100480869).

7. REFERENCES
[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective xml
keyword search with relevance oriented rankingPtoc.

ICDE, pages 517-528, 2009.

G. Bhalotia, A. Hulgeriy, C. Nakhez, S. Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases

using banks. IfProc. ICDE, pages 431-440, 2002.

B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.

Finding top-k min-cost connected trees in databaseBradn.

ICDE, pages 836-845, 2007.

R. Fagin. Combining fuzzy information from multiple

systems. IrProc. PODS pages 1-10, 1998.

K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword

proximity search in complex data graphs.Hroc. SGMOD,

pages 927-940, 2008.

H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: Ranked

keyword searches on graphs.Rroc. SGMOD, pages

305-316, 2007.

[7] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Eéfit
ir-style keyword search over relational database®rbc.
VLDB, pages 850-861, 2003.

[8] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keywdo
proximity search on xml graphs. Proc. ICDE, pages
367-378, 2003.

[9] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,

R. Desai, and H. Karambelkar. Bidirectional expansion for

keyword search on graph database$rioc. SGMOD,

pages 505-516, 2005.

B. Kimelfeld and Y. Sagiv. Finding and approximatingtk

answers in keyword proximity search. Bnoc. PODS, pages

173-182, 2006.

W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Retrieving

and organizing web pages by “information unit”.Pnoc.

WW\WV, pages 230-244, 2001.

(2]

(3]

(4]
(5]

(6]

[10]

[11]

