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ABSTRACT
This work deals with the problem of automatically creat-
ing semantic queries for knowledge bases from preference
feedback. Semantic knowledge bases are a good source for
retrieving entities for item recommendation. We show that
preference decisions are not only based on entities, but also
on their corresponding predicate-object relations. By ex-
tracting the weights from trained preference models, the
weighted predicate-object relations can be stored to a user
model. The objective is to use such prototype entities in a
general user model to formulate semantic queries for recom-
mendation retrieval.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

General Terms
Algorithms, Performance, Experimentation, Human Factors

Keywords
Semantic Query, Preference Model

1. INTRODUCTION
In semantic knowledge bases like Freebase1 and DBpe-

dia2 structured information about entities is stored. Because
these bases are maintained continuously, they are a reason-
able source for recommenders to retrieve candidate sets for
recommending items. For personalized recommendations it
is necessary to retrieve candidate sets which match the user’s
interests. Therefore two problems have to be addressed.
First, there is the problem of retrieving user’s interests and
second, there is the need of automatically creating queries
for accessing such knowledge bases.

1http://www.freebase.com
2http://dbpedia.org
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For item recommendations, a description of why items are
good recommendations is one of the most desirable type of
feedback which can be retrieved. This description can be
stored in a user profile and can later be used to search for
the best matching items. Hence, if the user provides all
necessary information, the recommendation task is a search
task. The problem is that users often are not willing to
provide such feedback.

In this work, we apply personalized preference learn-
ing on semantically represented entities, extract weighted
predicate-object relations from the trained model and use
this information to construct semantic queries to search for
items which can be recommended to the user.

In our approach, we first collect preference feedback be-
tween items of the same kind. Then, items are represented
only with information coming from a knowledge base. It is
assumed that the reasons for the collected preference deci-
sions are based on the known predicate-object relations of
the items. We therefore apply preference learning to be able
to assign weights to these predicate-object relations. These
weighted relations can be stored to a user profile and can
later be used to formulate queries to access knowledge bases.
We show that preference models trained on items which are
only represented by semantic features which can be found in
semantic knowledge bases perform good enough to extract
weighted predicate-object relations from the trained model.
Additionally we present a solution for using this informa-
tion to automatically query semantic knowledge bases for
recommended items.

2. RELATED WORK
Models for personalized preference learning, as well as se-

mantic user models are commonly used in the field of rec-
ommender systems and other related information retrieval
tasks, e.g. [3, 13]. Creating these models with semantic en-
tities can be done by applying graph kernels for structured
data to machine learning algorithms [12]. Preference learn-
ing and top-n recommendation both attempt at identifying
the relevance of items. Top-n recommendation is the process
of finding (and ranking) the top n items which should be of
interest to the user [8]. Items should be ranked in order of
interest to the user, creating a item ranking sub-problem [8].
Commonly, recommender systems are classified into one of
three categories depending on how the recommendation pro-
cess works [1],

• For content-based recommendations (or semantic rec-
ommendations), candidate items are identified by their
similarity to items already consumed by the user.



• Collaborative filtering-based recommender systems
find relevant recommendations by looking at what sim-
ilar users have consumed.

• Hybrid recommendations utilize methods from both
content-based as well as collaborative filtering-based
recommendation in order to find the most suitable
items.

Content-based recommenders were perhaps most popular
in the early days of online recommender systems [8], are to-
day often used in cold start3 settings where too little infor-
mation is available to apply collaborative filtering. Initially
the method was used in information retrieval [2].

Among the first collaborative filtering recommendation
systems, the Grundy system, created user profiles (so-called
stereotypes) in order to compare these and find relevant
items [17]. More recent approaches include Rashid et al. [16]
and their study of several collaborative techniques and how
they compare in terms of recommendation for new users.

Arguably most common today – hybrid recommenders,
come in a wide variety, e.g. demographic data-based rec-
ommendation [6], item meta-data based-recommendations
[18], etc. Most systems offering recommendations today
know more about the user than just their consumption
history, making hybrid extensions relatively simple and at
the same time boosting recommendation quality consider-
ably [11]. Additionally, context-aware recommender (struc-
turally a sub-set of hybrid recommenders), take information
about the users’ current situation into consideration when
generating recommendations. Cebrian et al. [5], for instance,
use time as a contextual feature in order to generate better
music recommendations.

Collecting user preferences in web search can be done im-
plicitly [9, 15]. When recommended items are presented in
list form, this approach can be applied. The alternative
of collecting explicit preference feedback by presenting two
items, where the user has to choose the preferred one can be
applied, too.

3. SEMANTIC USER MODELS
In this section we propose a semantic user model which is

able to construct personalized semantic queries by collect-
ing preference decisions from users. We show how entities
should be represented to train preference models and how to
use the trained models to retrieve weighted predicate-object
relations which help formulating semantic queries.

3.1 Structure of the Semantic User Model
Let S be a candidate set of items of the same type, for

instance a set of persons, movies, animals, books, etc. The
proposed semantic user model will retrieve item recommen-
dations from S by limiting S to only those entities matching
retrieved criteria.

In the sense of semantic representation of an element s ∈ S
is a collection of triples, where all subject-predicate-object
relations refer to the same subject identifier. It is also pos-
sible that objects are transitively connected to the subject.
Because all elements in S are of the same type, they can
be described by the same attributes. The entities share the

3Cold start refers to the concept of new users or system
which do not have any information about their users

same semantic predicates and often even the same predicate-
object relations.

For each predicate-object relation, a list of entities can
be retrieved which share this predicate-object relation. Fur-
thermore, such a list can be retrieved for more than just
one predicate-object relation. For instance in Freebase4 a
query can be formulated for retrieving all movies directed by
Christopher Nolan with actor Christian Bale. It is possible
to access any knowledge base by formulating similar seman-
tic queries to the example in Figure 1. A semantic query
is a collection of limiting properties. Nevertheless this kind
of query is too complex for users to formulate, but could be
formalized automatically.

To create a semantic query automatically, the focus lies
on the limiting properties of a query. The property limiting
the result list to a given type (compare with Figure 1 line 2 )
is already given by the type of the elements in S. Hence,
only the further limiting properties (compare with Figure 1
line 3 and 4 ) have to be retrieved somehow to formulate
such a query automatically.

When such weighted predicate-object relations can be re-
trieved, we propose to store this information into the seman-
tic user model, such that semantic queries can be formulated
automatically.

3.2 Retrieving and Representing Entities
The base for training data and candidates for recommen-

dation is S. We therefore retrieve semantic representations
of entities of the same type by formulating a semantic query
limiting the result list to a given type. For each element in
this result list the complete semantic representation has to
be retrieved.

As stated, each s ∈ S is a collection of triples. To train
preference models this representation is not suitable. Most
machine learning algorithms require a feature vector repre-
sentation of entities. Any semantic representation has to be
transformed to match this representation. Additionally each
index in each representing feature vector must always refer
to the same attribute.

For transforming such semantic representation to a fea-
ture vector representation, the properties in all triples in S
have to be collected, first. We refer to the set of selected
properties with P . For better performance while training
the preference models, we suggest to manually select the
properties in P . For instance for movies any entity could be
represented with the properties director, producer, actor,
release date, genre, and production company.

Most of these properties are not real-valued and hence
have to be converted to such representation. If a property
is a number, then this property can directly be taken as one
element in the feature vector. While a date value can also
easily be represented as a number (time since a fixed point in
time), other properties might have several different charac-
teristics. For instance there can be many persons who have
acted in the same movie. In such a case all found property-
object relations have to be taken as different features. Such
Boolean features, representing presence and absence of char-
acteristics, can be represented as the numeric values 1 and 0.

Figure 2(a) illustrates an entity consisting of five triples.
While the predicate-object relations p1-a1 and p2-a2 are
directly connected to the entity attributes a3 and a4 are
transitively connected to the entity. To represent the en-

4http://www.freebase.com/queryeditor



1[{
2"type ":"/ film/film",
3"directed_by ":[{"id":"/en/christopher_nolan "}],
4"starring ":{" actor ":{"id":"/en/christian_bale "}}
5}]

Figure 1: MQL query for all movies directed by
Christopher Nolan including actor Christian Bale.
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(c) Feature vector representation.

Figure 2: Entity represented by semantic relations.
By directly connecting objects (attributes) to the
subject (entity) it is possible to flatten the structure
so that the object can be represented as a feature
vector. Because the existence of a predicate-object
relation is a Boolean value, it is represented as 1.0.
The non-existence is represented as 0.0. The trans-
formation from (a) over (b) to (c) can be reversed.

tity directly with the transitively connected attributes, the
predicates can be expressed as predicate chains as can be
seen in Figure 2(b). Exemplary for movies predicate p1
could be ’genre’, p2 ’subject’, p3 ’starring’, p4 ’actor’, and
p5 ’role’. Given that these attributes have several different
characteristics, for instance p1 7→ {a1, a5, a6}, the corre-
sponding feature vector elements would be ”p1− a1” : true,
”p1 − a5” : false, ”p1 − a6” : false, ”p2 − a2” : true,
”p3− p4− a3” : true, and ”p3− p5− a4” : true.

3.3 Personalized Preference Models
Preference models usually serve to predict preferences be-

tween items. In [7] a preference model was trained with
item pairs and its relation, but for the ranking process, this
model only depends on items. For each item, a utility func-
tion computes a score, which serves as sorting criteria. Such
a utility function f : W × S → R is often used in learning
to rank, to keep the computational costs low. For any item
s1 ∈ S and s2 ∈ S, applies that f(s1) > f(s2)⇐⇒ s1 � s2.

An alternative to a utility function is the pairwise predic-
tion of preferences. If there is a set of items, then preference
models can predict the preferences between these items, to
result in a ranked list of items.

In contrast to the ability to rank items we propose to
train preference models only for the purpose of extracting
weights. All items are uniformly represented as feature vec-
tors where each element represents a property-object or a
property-value relation. The objective of extracting weights
is to assign these weights to the semantic relations.

Collecting Preferences.
Collecting preferences is crucial for the whole process

of training preferences and retrieving weighted predicate-
object relations which can be stored into the user model.
Hence, there will always be a cold start problem.

Feedback in the context of recommendations is often based
on ratings. These ratings can be binary, e.g. “item have been
used” or numeric e.g. a star rating. Two items which have
been rated differently in the same context can be used to
express a preference relation. This retrieval of preference
pairs is necessary when working with benchmark datasets
like Letor, where relevance judgments are numeric [14]. In
this scenario, the same context refers to the same query.

A more natural way to retrieve preferences is to present
two items and let the user choose the preferred one. Such ex-
plicit feedback is considered high quality feedback, because
such preference decisions are most likely correct.

In contrast to explicit feedback, there is the possibility
to extract preference relations implicitly from clickthrough
data [9, 15]. The proposed rules result in preference rela-
tions with minor quality (80.8% to 84.1% correct preference
relations [10]).

The collected preferences can be used to train preference
models. A preference consists of two items and their prefer-
ence relation. The items are represented with feature vectors
where all included elements are context independent.

Creating Preference Models.
For training, we suggest to use a support vector machine

(SVM) [7] with linear kernel, even though any linear re-
gression approach could be applied. In general, training is
done by learning the differences between items. Each pref-
erence in the training set consists of two items represented



as feature vectors and a corresponding label referring to the
relation “first item is preferred” (�) or “second item is pre-
ferred” (≺). By subtracting the second vector from the first,
the resulting vector reflects their differences. Some of these
differences may point to the reason for the found preference
which are noted as one of the two classes �= 0 and ≺= 1.

Formally, the subtraction of the vectors is retrieved from
the utility function s1 � s2 ⇐⇒ f(s1) > f(s2)⇐⇒ ω • s1 >
ω • s2 ⇐⇒ ω • (s1 − s2) > 0.

While training, the model is adapted to differentiate be-
tween instances of these two classes. After training, the
classifier can predict the preference relation for two items.

Weighted Predicate-object Relations.
Taking a SVM with linear kernel allows us to extract

weights ω from the trained model. These weights can be
used as linear regression by computing the scalar product.
The weights for each feature in the feature vector are di-
rectly connected to the importance of the features to the
preference decisions.

The feature vectors in the training set can be restored
to the former semantic representation. When doing the
same transformation with the extracted weight vector in-
stead of a feature vector, a prototype entity is created
with weighted predicate-object relations. By removing zero-
valued weights, this prototype entity can represent a pat-
tern for finding the most preferred entity. These weighted
predicate-object relations can be stored to the proposed user
profile.

4. EXPERIMENTS AND EVALUATION
In this evaluation it is shown that preference models can

be trained on semantic entities. Good performing models
are the precondition to use these models for constructing
queries.

4.1 Data
The experiments have been conducted on movie data. For

the 250 top rated movies of IMDb (in march 2012) the Free-
base entries have been retrieved. We have chosen popu-
lar movies to increase the probability that users have seen
movies from this collection. Then users provided preference
feedback for these movies.

The data used in our experiments was collected through
an online user study where users were asked to provide pref-
erence feedback. Preference feedback was collected by pre-
senting five movie poster thumbnails along with mouse over
information about the title, director and actors. Users had
to remove unknown movies before providing feedback. Af-
terwards they had to sort the remaining movies in the order
of their preferences.

A list of five movies [m1,m2,m3,m4,m5] can be split
into the ten preference relations m1 � m2, m1 � m3,
m1 � m4, m1 � m5, m2 � m3, m2 � m4, m2 � m5,
m3 � m4, m3 � m5, m4 � m5. A list of four movies
still leads to six preferences.

In total, 23 users provided feedback for 5173 movie pref-
erences. The user base consists of scientists and massively
multiplayer online game players. The annotator agreement
for the 1134 preference relations coming from different users,
but include the same movies is only 54%. Furthermore, the
agreement for the 404 relations rated twice by the same users
is 88%.

4.2 Experimental Setup
In the first part of the experiment each user data is eval-

uated individually. For each user all preference pairs are
retrieved from the collected data. Each movie in such a
preference pair is represented as a feature vector as shown
in Figure 2. A set consisting of 50 randomly selected prefer-
ences is taken to perform a five-fold cross validation to evalu-
ate the performance of a SVM with linear kernel. Hence this
set is split into training set, test set and validation set. In
each step of this performance evaluation 50 user preferences
are added to the set, until all preferences have been taken
or until the set consists of 450 preferences. There are four
users with at least 450 collected training samples, meaning
that the last evaluation is averaged by 4. At set size 50,
the evaluation is averaged by 23. In the second part of the
experiment all user data is evaluated, accordingly. Because
training samples for each step are chosen randomly, the first
and second part is repeated 10 times to average the evalu-
ated performance.

The performance is measured with the prediction error.
This error describes the percentage of wrongly predicted
preference pairs on the test sets.

The quality of the general preference model can be com-
pared with the mean of all individual models. The general
model is evaluated with the preference feedback of all users,
while the mean personalized model is the mean of individual
trained user data. Users did not provide the same amount
of feedback. The quality of the mean personalized model at
any training set size is averaged only on known performance
values at this point.

Although it depends on the experiments, the overall ob-
jective of creating semantic queries automatically is not part
of the experiments and is addressed in the discussion.

4.3 Results
Figure 3 shows the performance of the trained preference

models. Starting with small training sets of 50 training sam-
ples, the general model shows a prediction error of 40.2%,
while the mean prediction error of all users is 29.8%. The
lowest individual prediction error at this point was 15.8%
and the highest 34.6%. The prediction errors of both mod-
els decrease with raising number of training samples. In the
shown range, the error of the general model never falls under
the starting performance of the mean personalized model. If
all data is trained, the general model results in a prediction
error of 33.3% what is still higher than the mean individual
starting performance. The best performance value of the
mean personalized model is 14.5%.

4.4 Discussion
In this section we discuss the found results under three

aspects. First, the performance of the general and the in-
dividual models is discussed and second, the approach of
creating semantic queries (see Section 3) is adapted to the
general model and third, arising limitations and resulting
requirements are discussed.

General Model and Individual Models.
We have shown that the mean personalized model per-

forms better than the general model for any training set size.
The best performance value of the mean personalized model
is close to the agreement level of preference relations rated
twice by same users (see Section 4.1). The performance
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Figure 3: Model quality depending on the size of
the training set. The prediction error was evaluated
with five-fold cross validations.

of the general model is also better than the inter annota-
tor agreement for preference relations coming from different
users, but include the same movies. In the collected data
this agreement was 54%, while the trained general model
correctly classified 66.7% of all preferences. Both, the in-
ter annotator agreement and the performance of the general
model imply that preference models should be trained indi-
vidually.

Analysis of Weighted Predicate-subject Relations.
From the trained preference models the linear weights can

be extracted. As shown, personalized preference models per-
form better than the general model. The low prediction er-
rors even for small training sets reflect its quality. Hence,
the weights must reflect the reasons for retrieved preference
decisions. Table 1 shows the highest absolute weights and
corresponding features of the general preference model.

Because the weights reflect the importance of the features
to the preference decisions, the table can be interpreted as
a partial list of the most important and least important
features. The features are directly retrieved from seman-
tic predicate-object and predicate-value relations. Hence,
this importance can be applied to these semantic structures
and can be stored in a user profile.

It is possible to transfer the weight vector into a semantic
query. Because the data is coming from Freebase, a query
written in MQL can be created automatically (see Figure 4).
This figure shows an automatically created MQL query re-
trieved from the weight vector of the trained general model
(compare with Table 1). The ’...’ in line 11 stands for 5189
removed lines. Besides its size, this query is too restrictive
to retrieve any movie. Hence, only parts should be combined
to query Freebase. Unfortunately it is not possible to pass
the found weights, but negative weights can be respected
with a forbidden flag.

Strengths and Limitations.
The user study was used to show that the whole process of

retrieving, learning and predicting preferences on semantic
data is possible. This ability was a precondition to cre-
ate semantic queries automatically. To confirm the achieved
prediction errors, the user study is still in progress.

The constructed query could be used to access knowledge
bases, but knowledge bases currently cannot handle queries

of this size and complexity. In information retrieval ranking
functions with weighted signals are already commonly used
in commercial search engines [4]. For any knowledge base
it should be possible to assign weights to the query parts
in the same way. As workaround, only the top-k predicates
can be used to query the knowledge base or each of these
predicates can be used to get result sets which are merged
in a post-processing step according to the predicate weights.

5. CONCLUSION
This work is based on preference data which was collected

in a user study. Users were asked to sort short lists of movies,
according to their preferences. Each movie was represented
by semantic preference-object relations found in Freebase.
The Freebase representation was transformed to a feature
vector representation, which can be reversed to the original
structure. The collected preference data consisting of the
retrieved feature vectors was trained with a support vector
machine with linear kernel, to be able to extract the weights
for each preference-object relation.

It was shown that models trained on context-independent
features from Freebase are able to predict user preferences.
According to the collected data, it is better to train pref-
erence models individually as to train a general model. No
suggestion for the optimal number of preference feedback
for training could be found, but individually trained pref-
erence models on 50 collected preferences resulted in good
performance values.

Because the trained preference models performed well, the
extracted weights can be taken to create semantic queries
automatically. Therefore the weight vector was transformed
to its corresponding Freebase representation. Such a pro-
totype entity with weighted preference-object relations can
be stored to a user model and can be used for creating se-
mantic queries. We have exemplary shown the creation of
an MQL query for querying Freebase and discussed neces-
sary steps to achieve that such a query could actually lead
to personalized item recommendations. Currently, there is
the limitation that no query language for semantic knowl-
edge bases supports weighted predicate-object relations and
that applying too many constraints to a query leads to a
computational expensive search process.
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