
A Case for Semantic Full-Text Search
(position paper)

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haussmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast,baeurlef,buchholb,haussmann}@informatik.uni-freiburg.de

ABSTRACT
We discuss the advantages and shortcomings of full-text
search on the one hand and search in ontologies / triple
stores on the other hand. We argue that both techniques
have an important quality missing from the other. We ad-
vocate a deep integration of the two, and describe the asso-
ciated requirements and challenges.

1. FULL-TEXT SEARCH
The basic principle of full-text search is that the user en-

ters a (typically small) set of keywords, and the search en-
gine returns a list of documents, in which some or all of
these keywords (or variations of them like spelling variants
or synonyms) occur. The results are ranked by how promi-
nent these occurrences are (term frequency, occurrence in
title, relative proximity, absolute importance of the docu-
ment, etc.)

1.1 Document-oriented queries
This works well as long as (i) the given keywords or vari-

ants of them occur in enough of the relevant documents, and
(ii) the mentioned prominence of these occurrences is high-
est for the most relevant documents. For example, a Google
query for broccoli will return the Wikipedia page as the first
hit, because it’s a popular page containing the query word
in the URL. A query for broccoli gardening will also work,
because relevant documents will contain both of the words,
most likely in a title / heading and in close proximity.

For large document collections (as in web search), the
number of matching documents is usually beyond what a
human can read. Then precision is of primary concern for
such queries, not recall. The informational Wikipedia page
(or a similar page) should come first, not second or fourth.
And it is not important that we find all broccoli gardening
tips on the internet.

Bottom line: Full-text queries work well when relevant
documents contain the keywords or simple variations of them
in a prominent way. The primary concern is precision, not
recall.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
JIWES ’12 August 12 2012, Portland, OR, USA
Copyright 2012 ACM 978-1-4503-1601-9/12/08 ...$15.00.

1.2 Entity-oriented queries
Consider the query plants with edible leaves. As we explain

now, this kind of query is inherently problematic for full-text
search engines.1

The first problem is as follows. Relevant documents are
likely to contain the words edible leaves or variations of them
(see above). But there is no reason why they should con-
tain the word plants, or variations of it like plant or botany.
Rather, they will contain the name of a particular plant,
for example, broccoli. This is exactly the kind of knowledge
contained in ontologies, discussed in Section 2.

The second problem is that the sought-for results are not
documents and also not passages in documents, but rather
a list of entities, plants with a certain property. This is not
only an issue of convenience for the user, but also one of
result diversity. Even if the search engine would manage
to match instances of plants (like broccoli) to the keyword
plant, the problem remains that the result list contains many
hits referring to one and the same (well-known) plant, while
many (lesser known) plants will be missing.

Worse than that, the information for a single hit could
be spread over several documents. For example, for the
query plants with edible leaves and native to Europe, the
information that a particular plant has edible leaves may be
contained in one document, while the information that it is
native to Europe may be contained in another document.
This is beyond the capabilities of full-text search engines.

Unlike for the queries from the previous subsection, recall
is much more important now. Precision must not be ignored,
but becomes a seconday concern. For example, consider the
query apollo astronauts who walked on the moon from the
2011 Yahoo Semsearch challenge2. A user would certainly
like to find all 12 entities matching this query. Regarding
precision, it would be acceptable if a number of irrelevant
results of the same order of magnitude were interspersed.

Bottom line: Entity-oriented queries typically require
ontological knowledge. High recall is of primary concern.
Precision must not be ignored, but becomes secondary.

2. ONTOLOGIES
For the purpose of this short paper, we view ontologies as

collections of subject-predicate-object triples (often called
facts), where each element of each triple has an identifier
that is consistent among triples. For example, Broccoli is-

1Let us ignore the untypical case that a precompiled docu-
ment containing those words and the result list exist.
2semsearch.yahoo.com

a Vegetable or Vegetable is-subclass-of Plant or Broccoli is-
native-to Europe.

Given an ontology with sufficient information, it is easy
to ask even complex queries, which require the connection of
many facts, with a precisely defined semantics. For example,
the query for all plants native to europe would require the
connection of all three facts from the previous paragraph.

2.1 Obtaining the facts
The first obvious problem of ontologies is how to obtain

the facts. This is easy, if the facts are already organized in
a database. Then all that is needed is a conversion to the
proper format. A large part of linked open data (LOD) [5]
and hence of the BTC datasets [7] is of this kind.

Another source of ontology data are users creating machine-
readable fact triples explicitly. Only a relatively small part
of the BTC datasets is of this kind.

However, much (if not most) information is stored in the
form of natural language text, without semantic markup.
For the obvious reason that this is the primary form of com-
munication between human beings. For example, there are
thousands of documents, including several Wikipedia arti-
cles, on the web stating somewhere in a sentence that the
leaves of broccoli are edible. But this information is neither
contained in DBpedia, nor in current LOD, nor in BTC.

Bottom line: Much information is available only in the
form of natural language text. This is unlikely to change
also in the long run. In particular, for recent and specific
information.

2.2 Information extraction
Extracting facts of the form above from natural language

text is a hard problem due to the diversity and ill-definedness
of natural language. This task, known as information ex-
traction, is an offline process. Whatever information was
failed to be extracted will not be contained in the ontology,
although it should be. Whatever wrong information was
extracted will be in the ontology, although it should not be.

It is exactly one of the secrets of success of full-text search
that it avoids this problem in the first place. Full-text search
engines simply index (almost) every word in all documents.
When the document contains your keywords, you have a
chance to find it. Also note how, for the sake of precision,
a search engine company like Google has introduced new
features (like error-tolerance or synonyms or returning) only
at a point where they were virtually error-free.

In contrast, state of the art information extraction from
natural language text is far from being error-free. For ex-
ample, the best system on the ACE 2004 dataset for the
extraction of 7 predefined relations reported a precision of
83% and a recall of 72% [11], [1]. In [2], a state of the art
system that automatically identifies and extracts arbitrary
relationships in a text gives an average precision of 88% and
a recall of only 45%. Both systems only extract binary re-
lationships and the extraction of multiway relationships is a
significantly more complicated task [13].

Bottom line: Fact extraction from natural language text
is an offline problem with a high error rate. The typical
recall is 70% or less even for popular relations.

2.3 Consistent names
The other big problem with ontology data is consistent

naming of entities and relations. LOD solves this by unify-

ing different names meaning the same thing via user-created
links (owl:sameAs). This works well for popular relations
and entities, but for more specific and less popular relations,
such user-created links are less likely to exist.

Bottom line: Unified names for entities and relations
are feasible for a core of popular facts, but unreasonable to
expect for other facts.

3. INTEGRATION OF FULL TEXT AND ON-
TOLOGY DATA

In the previous two sections we have argued how a large
part of the world’s information is (and will be for a long
time) available only as full text, while for a certain core
of popular knowledge an ontology is the storage medium
of choice. We therefore advocate an integration of the two
types of search, which we will refer to as semantic full-text
search.

We see four major research challenges associated with
such a semantic full-text search. We will describe each
of them in one of the following four subsections. We will
also comment how we addressed them in our own prototype
for an integrated such search, called Broccoli [3]. We en-
courage the reader to try our online demo available under
broccoli.informatik.uni-freiburg.de

We remark that we are not claiming that our own proto-
type is the only way to address these research challenges.

3.1 Entity recognition in the full text
An essential ingredient of a system for semantic full-text

search is the recognition of references (including anaphora)
to entities from the given ontology3 in the given full text.
For example, consider the following sentence: The stalks of
rhubarb are edible, but its leaves are toxic. Both of the un-
derlined words should map these words to the correspond-
ing entity or entities from the given ontology, for example,
dbpedia.org/resource/Rhubarb.

For reasonable query times, this kind of entity recognition
has to be done offline. However, unlike the fact extraction
described in Section 2.2, state-of-the-art methods for entity
recognition achieve relatively high values for both precision
and recall of around 90% [12].

Bottom line: Offline entity recognition is an essential
ingredient of semantic full-text search. The task is much
simpler than full information extraction, with precision and
recall values of around 90%.

3.2 Combined Index
Typical entity-oriented queries like our plants with edible

leaves native to Europe require three things: (1) finding en-
tities matching the ontology part of the query (plants native
to Europe), (2) finding text passages matching the full-text
part of the query (edible leaves), and (3) finding occurrences
of the entities from (1) that co-occur with the matches from
(2).

For both (1) and (2), efficient index structures with fast
query times exist. To solve (3), the solutions from (1) and
(2) could be combined at query time. However, this is a ma-
jor obstacle for fast query times, for two reasons. First, the
entity recognition problem described in the previous section
would have to be solved at query time. Second, even if the

3In particular, this could be from LOD or BTC.

final result is small, the separate result sets for (1) and (2)
will often be huge, and fully materializing them is expensive.

In our own prototype Broccoli, we therefore propose a joint
index with hybrid inverted lists that refer to both word and
entity occurrences; for details, see [3].

Bottom line: Semantic full-text search with fast query
times seems to require a joint index over both the word and
the entity occurrences.

3.3 Semantic Context
For queries with a large number of hits, prominence of

keyword occurrence has turned out to be a very reliable
indicator of relevance. However, entity-oriented queries tend
to have a long tail of hits with relatively little evidence in
the document collection. Then natural language processing
becomes indispensable [8].

For example, consider again the query plants with edible
leaves and again the sentence The stalks of rhubarb are ed-
ible, but its leaves are toxic. This sentence is one of only
few in the whole Wikipedia matching that query. But it
should not count as a hit, since in it edible refers only to the
stalks and not to the leaves. For such queries, we need an in-
strument for determining which words semantically “belong
together”.

In our own prototype Broccoli, we solve this problem by
splitting sentences into subsentences of words that belong
together in this way. For the sentence above, after anaphora
resolution this would be The stalks of rhubarb are edible and
Rhubarb leaves are toxic. Again, see [3] for details.

Bottom line: Entity-oriented queries often have hits with
little evidence in the document collection. To identify those,
a natural language processing is required that tells which
words semantically “belong together”.

3.4 User interface
We discuss two challenges which are particularly hard and

important for semantic full-text search, especially in combi-
nation: ease of use and transparency.

A standard query language for ontology search is SPARQL
[10]. The big advantage is its precise query semantics. The
big disadvantage is that most users are either not willing
or not able (or both) to learn / use such a complex query
language. Languages like SPARQL are useful for the work
behind the scenes, but not for the front-end.

On the other extreme of the spectrum is keyword search,
the simplicity of which is one the secrets of success of full-
text search. For full-text search, the query semantics of
keyword search is reasonably transparent: the user gets doc-
uments which contain some or all of the keywords. For se-
mantic full-text search this is no longer the case. Which part
of the query was considered as an entity, which as a word,
and which as a class of entities? How were these parts put
in relation to each other?

The other major ingredient of transparency, besides a pre-
cise query semantics, are results snippets. Result snippets
serve two main purposes. First, clarifying why the respec-
tive hit was returned. Second, allowing the user a quick
check whether the hit is relevant.

Systems for what has become known as ad-hoc object re-
trieval [9] try to infer the query semantics from a simple
keyword query. Result snippets are treated as a separate
problem [6]. In existing semantic search engines on the web,
they are often of low quality and little use, e.g. Falcons or

SWSE [4].
In our own prototype Broccoli, we use a hybrid approach.

Like in keyword search, there is only a single search field.
However, using it, the user can build a query, where part
of the semantic structure is made explicit. This process is
guided by extensive search-as-you-type query suggestions.
Due to lack of space here, we refer the reader to our online
demo under broccoli.informatik.uni-freiburg.de.

Bottom line: Particular challenges for a user inter-
face for semantic full-text search are ease of use and trans-
parency. Of the currently existing semantic search engines,
most neglect one or even both.

4. REFERENCES
[1] C. C. Aggarwal and C. Zhai, editors. Mining Text

Data. Springer, 2012.

[2] M. Banko and O. Etzioni. The tradeoffs between open
and traditional relation extraction. In ACL, pages
28–36, 2008.

[3] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann.
Broccoli: Semantic full-text search at your fingertips.
CoRR, ad.informatik.uni-freiburg.de/papers, 2012.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[5] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked data on the web. In WWW, pages 1265–1266,
2008.

[6] R. Blanco and H. Zaragoza. Finding support sentences
for entities. In SIGIR, pages 339–346, 2010.

[7] Billion triple challenge dataset 2012.
http://km.aifb.kit.edu/projects/btc-2012/.

[8] S. T. Dumais, M. Banko, E. Brill, J. J. Lin, and A. Y.
Ng. Web question answering: is more always better?
In SIGIR, pages 291–298, 2002.

[9] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In WWW, pages 771–780,
2010.

[10] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C recommendation, W3C, Jan.
2008. http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/.

[11] L. Qian, G. Zhou, F. Kong, Q. Zhu, and P. Qian.
Exploiting constituent dependencies for tree
kernel-based semantic relation extraction. In
COLING, pages 697–704, 2008.

[12] E. F. T. K. Sang and F. D. Meulder. Introduction to
the CoNLL-2003 shared task: Language-independent
named entity recognition. CoRR, cs.CL/0306050,
2003.

[13] S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261–377, 2008.

