Integrating Ontologies K-Cap 2005

October 2, 2005 Banff, Canada Benjamin Ashpole, Marc Ehrig, Jérôme Euzenat, Heiner Stuckenschmidt

Research Presentations

Ontology Alignment Evaluation Initiative

Topics

- ontology/schema alignment and matching
- ontology/schema mapping and transformation
- ontology/schema merging and integration
- ontology/schema mediation and reconciliation
- reuse of knowledge from disparate sources (text, user input, etc.) for ontology alignment
- automatic and semi-automatic approaches
- mapping languages
- applications for and tools based on alignment
- integration within larger applications
- evaluation approaches
- translation of information between heterogeneous sources

Agenda I

9:00- 10:45	Session 1: Research Presentations Akkermans: Reverse Leibniz, and then Bend It Like Beckham Choi, Hatala: Towards Browsing Distant Metadata Using Semantic Signature Chu, Chow, Chen: Semantic Association of Taxonomy-based Standards Using Ontology Ehrig, Euzenat: Relaxed Precision and Recall
11:10- 12:00	Session 2: Research Presentations Gasevic, Hatala: Searching Web Resources Using Ontology Mappings Hu, Jian, Qu, Wang: GMO: A Graph Matching for Ontologies

Agenda II

1:30-	Session 3: Research Presentations
2:20	Lamsfus: Towards Semantic Based Information Exchange and Integration Standards Silva, Maio, Rocha: An approach to ontology mapping negotiation
	OAEI
	Euzenat, Stuckenschmidt: Introduction
	Ehrig: Results of University of Karlsruhe Valtchev: Results of University of Montreal / INRIA
2:20-	Session 4: OAEI
3:00	Zanobini: Results of IRST Trento Hu: Results of University of Southhampton Nsjian: Results of Southeast University Nanjin Troncy: Results of CNR / Pisa
	Wrap-Up

Integrating Ontologies K-Cap 2005

October 2, 2005 Banff, Canada Benjamin Ashpole, Marc Ehrig, Jérôme Euzenat, Heiner Stuckenschmidt

From Leibniz to Beckham: Time Ontology Mappings as PSM

Hans Akkermans

AKMC

Hans Akkermans

& Free University Amsterdam VUA Business Informatics

K-CAP, Banff, 2 October 2005

Positioning: Two Traditions in Temporal Reasoning

Intervals

- Common in logic and AI temporal reasoning
- Cf. Allen's axiomatization, and associated temporal reasoning methods
- Many different modellings of time possible

Points

- Standard in science, engineering, and math
- Cf. dynamic systems simulation, and analytical & numerical methods
- Many different modellings of time possible
- This work
 - How does the (continuous) world look like if you are a fully discrete being?
 - ➔ Two ontological perspectives

Problem: ontology mapping between time (point) ontologies

- Prototypical example 1:
- ODE: Ordinary differential equation: d/dt x_t = f(x_t)
- Continuous time $t \in \Re$
- D = d/dt is the "generator of the infinitesimal time evolution"

- Prototypical example 2:
- Iterated map: $X_{S+1} = f(X_S)$, or $\Delta X_S \equiv X_{S+1} - X_S = g(X_S)$
- Discrete time $S \in \aleph$
- N = 1 + ∆, the "Next" operator is the generator of the discrete-time evolution

• Key conceptual problem: infinitesimal calculus in discrete space

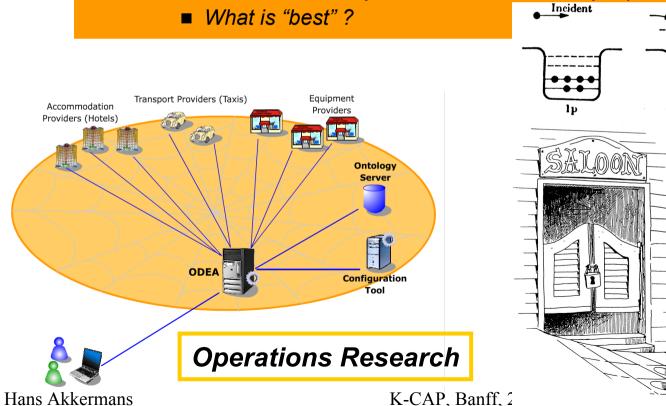
In particular: to what concept does the derivative d/dt map?

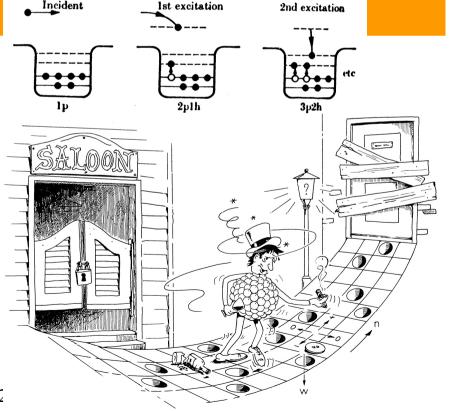
Motivations (1)

• Empirical

➔ Do alternative but analogous system models actually yield the same empirical predictions?

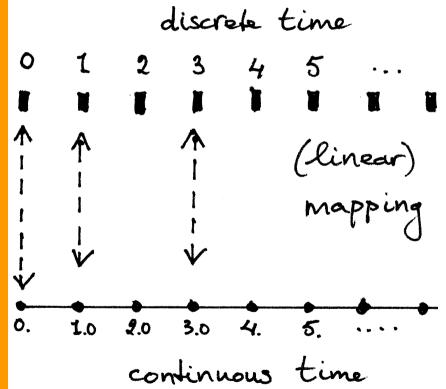
• Computational


Discrete modellings (if possible) probably have computational advantages since the computer is a discrete machine


Informational

Alternative modellings may yield different kinds of important information more easily

- Conceptual: Many cases exist where dynamic systems can be expressed in alternative models, in both continuous and discrete time
 - → Intuition: underlying ideas are conceptually the same
 - Are models "really" different or "essentially equivalent"?

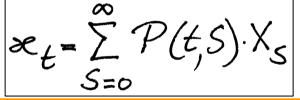

Standard numerical analysis and simulation:

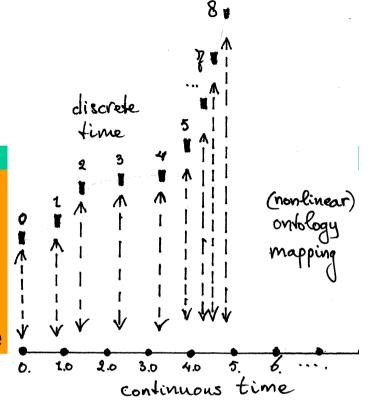
- ODE: $d/dt x_t = f(x_t)$
- $d/dt x_t \equiv \lim_{\tau \to 0} (x_{t+\tau} x_t) / \tau$
- Drop $\lim_{\tau \to 0}$ and keep τ finite: $(x_{t+\tau} x_t) / \tau = f(x_t)$

or

•
$$\Delta X_{S} \equiv X_{S+1} - X_{S} = \tau f(X_{S})$$

• $(\tau \text{ is finite "stepsize"})$


- In fact based on linear ontology mapping
- Systematic truncation or discretization error



- Discrete events S mapped onto real time t:
 - Stochastic: discrete points "smeared out" over time

→ Non-linear, and not one-to-one

Specific choice: Poisson probability distribution

$$\mathfrak{R}_{t} = \sum_{s=0}^{\infty} \frac{1}{s!} \left(\frac{t}{t} \right)^{s} = \frac{t}{\sqrt{t}} \chi_{s}$$

 Time spacing of independent events; cf. helpdesk: distribution of calls over time

Interpreted as transform equations

Transform Methods as PSMs

- If a problem is difficult to solve directly, do:
 - → 1. Map problem to new space where it's easier to solve
 - \rightarrow 2. <u>Solve</u> problem in this new space
 - → 3. Map solution back to original space,
 - and you are done!
- Scientific examples: Fourier, Laplace transforms: transform from real time to frequency space

 \rightarrow E.g. Differential equations become algebraic equations

- Game examples: mutilated chessboard, Nim
 - → E.g. You win easily!

Hans Akkermans

K-CAP, Banff, 2 October 2005

Key Result

Some Properties of the T transform

Derivative D = d/dt maps
onto the finite divided
difference Δ

- Repeated application of discrete Next operator N
 = 1 + ∆, gives solution of continuous system
- (This is the *first* computationally practical Taylor-type algorithm)

5	Property No.	Continuous-time function $x_t = T(X_S)$	Discrete-time function $X_S = \mathcal{F}(\mathbf{x}_t)$
	I.	1 (constant)	1 (constant)
	II.	t	S
	III.	t ²	S(S-1)
	IV.	t ³	S(S-1)(S-2)
	V.	t ⁿ	S! / (S-n+1)!
	VI.	e ^{At}	$(1 + A)^{S}$
	VII.	$A x_t + B y_t$	$A X_S + B Y_S$
	VIII.	d/dt x _t	$\Delta X_{S} \equiv X_{S+1} - X_{S}$
	IX.	$d^{n}/dt^{n} x_{t}$	$\Delta^n X_S$
	Х.	$f_t \equiv y_t \times x_t$	$F_{S} = \sum_{n=0}^{n=S} [S!/((S-n)!n!)] \Delta^{S-n} Y_{0} \times X_{n}$

Solving Large-Scale Linear Systems

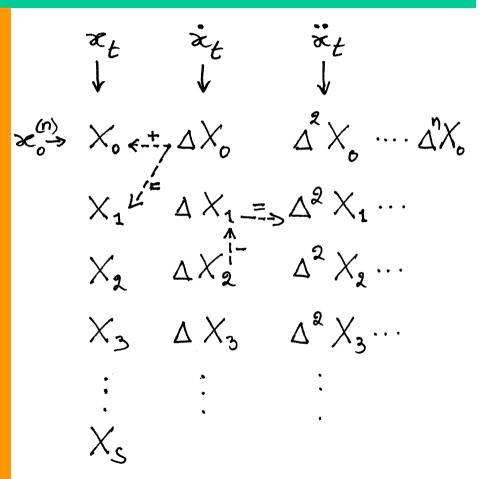
- Original problem: $d/dt \mathbf{x}_t = \mathbf{A} \mathbf{x}_t$
- 1. Map problem to new space: $\Delta X_{S} = A X_{S}$
- 2. Solve problem in this new space: $X_{S+1} = (1 + A) X_S \implies X_S = (1 + A)^S X_0$
- 3. Map solution back to original space: x_t = e^{At} x₀
 And you are done

• Some applications:

- Master equations and random walks
- Model-based optimal control theory

Non-linear dynamics (and chaos)

- Example: So-called logistic models
 > E.g. found in ecology, and diffusion/learning theory
 > Note: Discrete models yield basic example of chaos
- ODE equation: $d/dt x_t = A x_t (1 x_t)$
- Discrete analogy $\Delta X_{S+1} = A X_S (1 X_S)$? No!


$$X_{S+1} = (1+A)X_{S} - A\sum_{n=0}^{S} {S \choose n} \Delta^{S-n} \times_{O} \times_{N}$$

Similarly for famous Lorenz ("butterfly") chaos [weather]

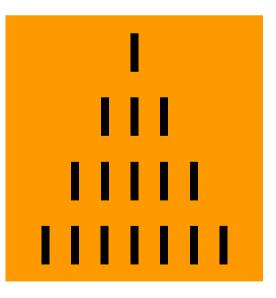
- Unexpected effects:
 - ➔ No memory in continuous system
 - → But memory in equivalent discrete system

Qualitative Physics / Reasoning

- Shoham's Extended Prediction Problem Does Not Exist
- Strictly discrete and finite reasoning can give you all the results of infinitesimal calculus
- See T Transform tableau method

Conclusion: Android Epistemology

- It is indeed possible to solve continuous problems in strictly discrete ways by ontology mappings
- Thus, discrete beings (such as androids) have the same capabilities as continuous beings (such as humanoids)
- Ontology mappings are <u>themselves</u> sophisticated ontologies, not simply (equivalence) concept maps
- Ontology mapping is a substantive issue, rather than a matter of formal representation
 - → This already applies to upper level ontologies such as time
 - → (so, what about the rest?)
- There is a need for substantive ontology modelling (not representation) work and applications


➔ There is not enough of this in the Semantic Web field now

Hans Akl

Appendix: Nim

• Rules (two players):

- → Each turn: delete/remove any desired number of sticks (stones), but from one row (box) only
- → Who is left with the *last* stick (stone), looses the game

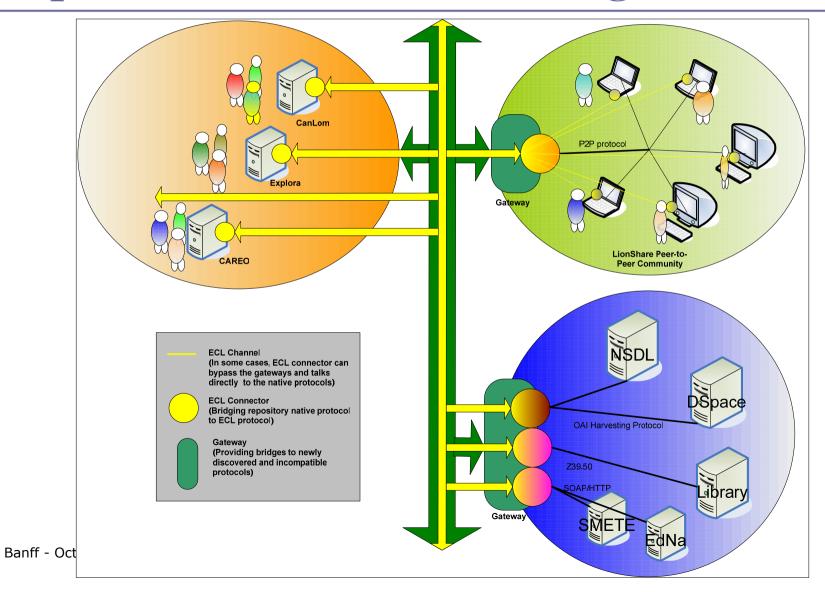
Towards Browsing Distant Metadata Using Semantic Signatures

Andrew Choi & Marek Hatala

Laboratory for Ontological Research School of Interactive Arts and Technology Simon Fraser University Surrey

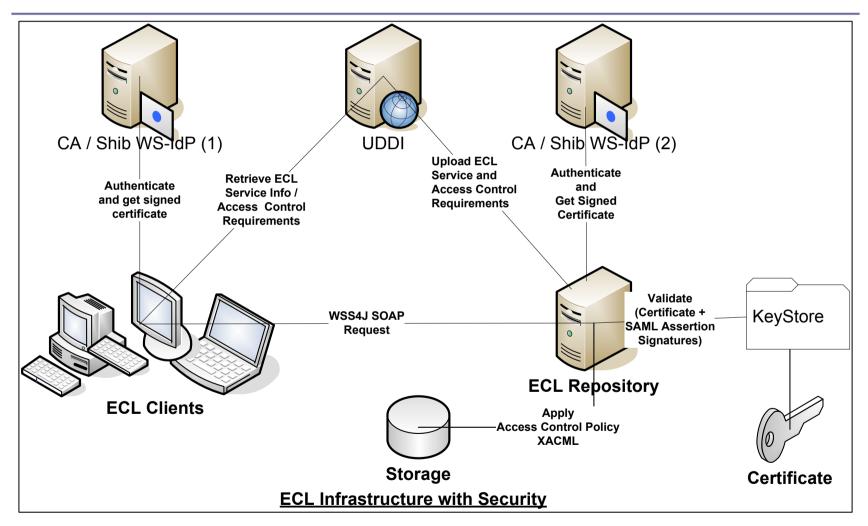
http://lore.iat.sfu.ca

K-CAP Workshop on Integrating Ontologies October 2, 2005 in Banff, Canada


Overview

Background and Motivation

- Approach
- Realization
- Evaluation & Discussion
- Future Directions



Open Network of Learning Services

ECL Infrastructure

		Splash - Netscape I	Browser			<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> o <u>B</u> ookmarks <u>T</u>	ools <u>H</u> elp	_ 🗆 X
	0		2	ECL protocol	SEARCH	http://pool.iat.sfu.ca/fe	edsearch/index.js		
r		🗋 Splash		🔘 X 📄 LionShare		×			P -)
				S	bla Federated S	Search			<u>~</u>
				Learning O	bject Federat	ted Search			
				jinternet	plash Search				
		Search: 🔽 Eler	a 🗹 CanLom	🗹 EdNa 🗹 Ariadne 🛛	☑ Smete ☑ F LS-GW	Pond 🗹 eLinc 🔽 Explora	RDN ECL-	<u>Remove Reposi</u> Find Repositorie	tories 25
				Chec	<u>k All</u> <u>Unchec</u>	<u>k All</u>			
				©2004 Simon Fraser Univer	sity <u>Federated Se</u>	arch demo for ECL Network			
anff - (

Splash UDDI Search - Nets	scape Browser	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> o <u>B</u>	ookmarks <u>T</u> ools	: <u>H</u> elp 🗕 🗆	X
👻 💽 💽 🥃	CL protocol	EARCH	fu.ca/fedsearch,	/index.js	Z 루 🛛	2
🕑 📧 📋 Splash UDDI Search	🔘 🗙 📄 LionShare	X			ð	-
Elera Get Classification	DI Search					4
Search Form:						
Classification	ANY Computers & Information Computer science Human-computer interaction Computer Networking	(OR)				
ECL Service	search 💌 (AND)					
ECL Protocol and Version	ANY 🔽 (AND)					
ECL Security	Federated Security 💽 (A	AND)				
ECL Search Pattern	ANY 💽 (AND)					
Metadata Schema	ANY DC1.0 V (OR)					
Search						

Pond

[0]

eLinc

[2]

Explora

[5]

RDN

[30]

Smete

[30]

ECL-LS-

G₩

[0]

‱ Ca	nl oon	n Eine	ancinc	σLi	ivina

"CanLearn Interactive provides on-line information and interactive planning tools to help Canadians explore learning and educational opportunities, research occupations, develop learning strategies and create financial plans to achieve their goals. It is a comprehensive resource with the CanLearn Cafe having links to such sites as media and audio archives from Canadian campuses, internet resources, job search, discussion page, and news, articles, tips and advice for the secondary and post-secondary students...CanLearn Interactive is Canada's one-stop resource for the information and interactive planning tools. You can use these tools to explore learning and education opportunities, research occupations, develop learning strategies, and create the financial plans to achieve your goals. The site also is available in French".

[30]

EdNa Ariadne

[20]

canlearn.ca - unknown - unknown - View XML

Eric Weisstein's World of Astronomy

Eric Weisstein's World of Science is written and maintained by the author as a public service for scientific knowledge and education. Although it is often difficult to find explanations for technical subjects that are both clear and accessible, this web site bridges the gap by placing an interlinked framework of mathematical exposition and illustrative examples at the fingertips of every internet user.

scienceworld.wolfram.com - unknown - unknown - View XML

Elera

[5]

CanLom

[10]

Interpretation Stress Stres

Eric Weisstein's World of Science is written and maintained by the author as a public service for scientific knowledge and education. Although it is often difficult to find explanations for technical subjects that are both clear and accessible, this web site bridges the gap by placing an interlinked framework of mathematical exposition and illustrative examples at the fingertips of every internet user.

Banff - Q

Motivation Summary

- Distributed network of object repositories
- Users select repositories as they become available
- No prior alignment of conceptual structures between repositories

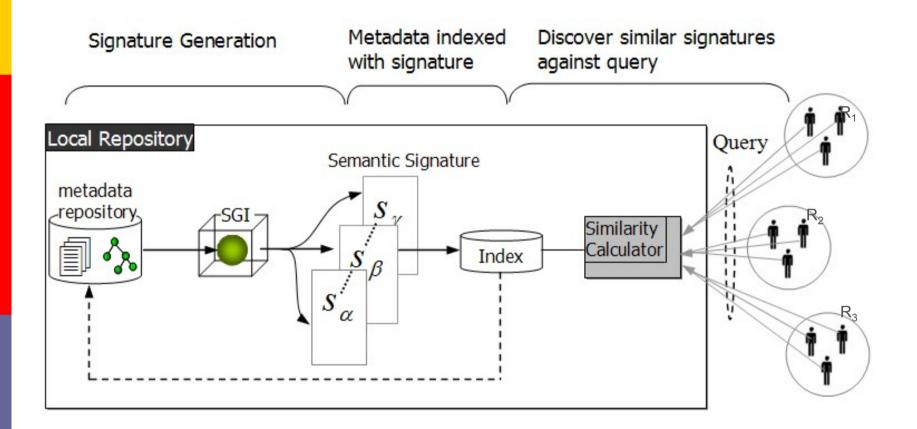
Goal: Support search and retrieval using local concepts

Approach: Semantic Signatures

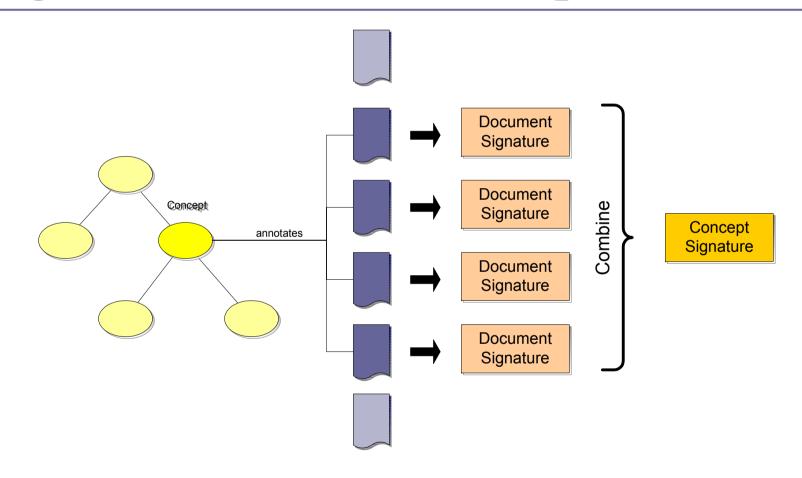
Assumptions

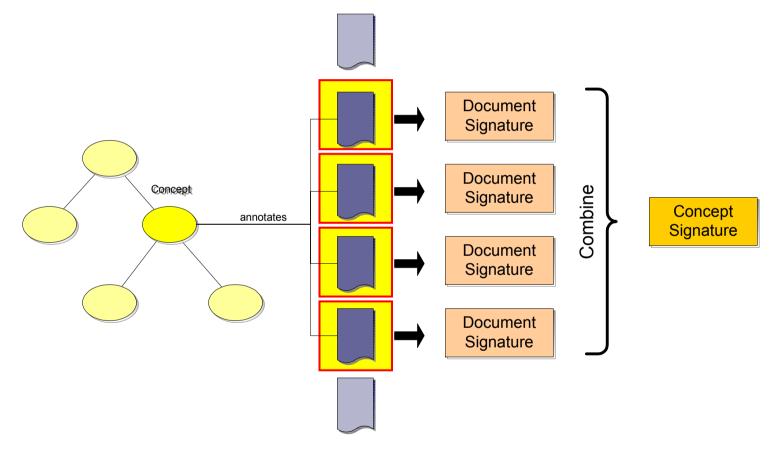
Content: *metadata* (+ objects)

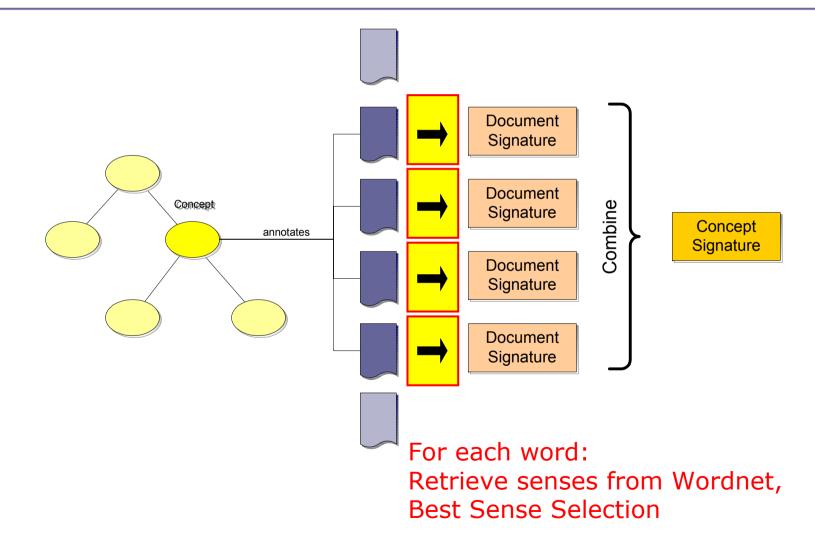
- Content in the remote repository annotated with *remote* concepts
- User associated with local content (user community repository, individual collection, etc.)
- Local content annotated with *local* concepts

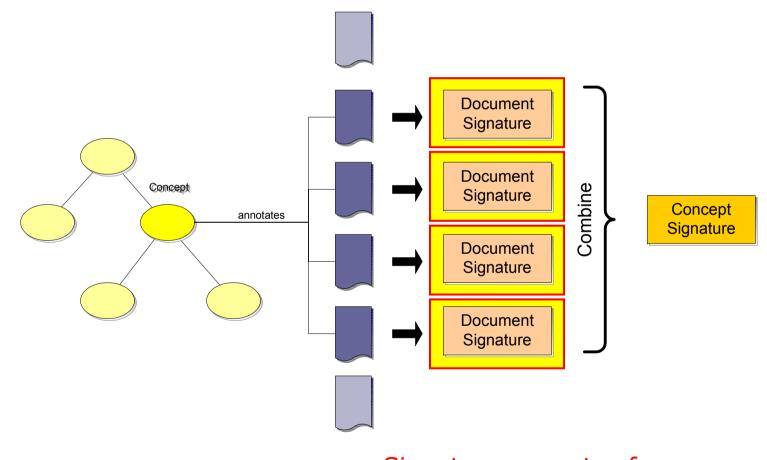

Main Idea

Use WordNet as a mediator

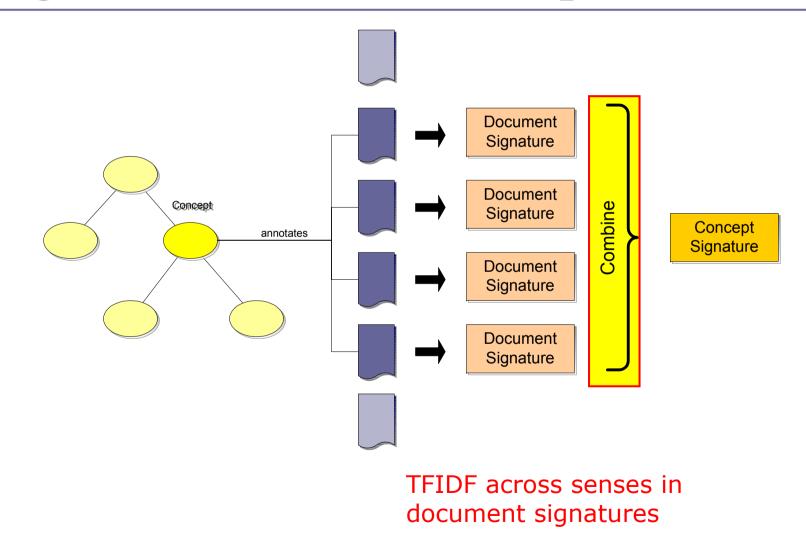

- Represent concepts in the ontology using semantic signatures
 - Semantic signature is a logical grouping of representational word senses for the concept.
- Match signatures to determine concept similarity between local and remote concepts


Searching with Signatures





TFIDF across all documents annotated with same concept



Signatures as sets of senses

Signature Generation Steps

Best Sense Selection

For each metadata document $D \in C_1$

Get the list of synsets for each word term $T_1 \in D$

For each synset Syn_1 of the word term T_1

For each sense term $S_i \in Syn_1$

1 Compute associative frequency af for S_i to other senses $S_k \in Syn_k$, $Syn_k \subseteq T_k$ and $T_1 \neq T_k$

1.1 return the sense S₁ with highest score Max(*af*)

- 2 Compute associative frequency af for S_i to k-order parent senses $PS_k \in P(Syn_k)$, $P(Syn_k) \subseteq T_k$ and $T_1 \neq T_k$ 2.1 return the sense S_p with highest score Max(af)
- 3 Record the most popular sense S_w offered by WordNet

Select the sense according to the preference ranking to represent the word term T_1 Return the Best Sense to represent word term T_1

Aggregate all sense from all important word terms to represent signature of the document D

Strategy I: Local Context

Example: Windows is an <u>OS</u> for <u>computer system</u>. Document vector D₁

Word term	Word Sense
Windows	Synset 1: (windowpane, window)
	Synset 2. (operating system), computer screen)
	Synset 3: (framewor, opening)
OS	Synset 1: (os)
	Synset 2: (osmium. Os. atomic number 76)
	Synset 3. (operating system), OS)
	Synset 4: (oculus sinister, OS)
Computer	Synset 1. (computer device), computing machine,
	data processor>
	Synset 2: (calculator, reckoner, figurer, estimator,
	computer

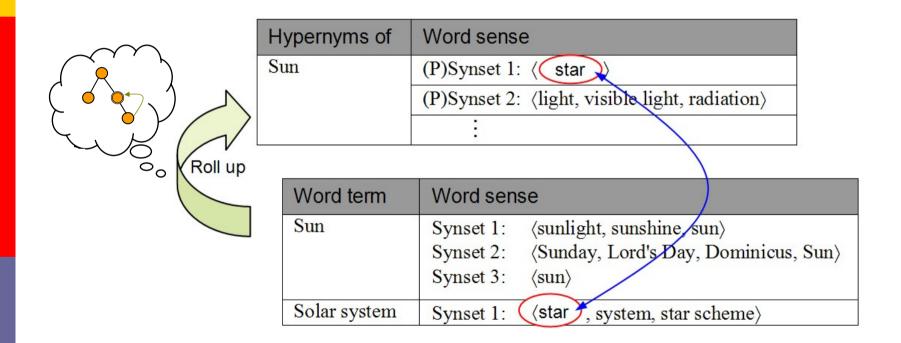
Synset 2" will be selected as the best sense for word "Windows"

Strategy II: Parent Senses

For each metadata document $D \in C_1$ Get the list of synsets for each word term $T_1 \in D$ For each synset Syn_1 of the word term T_1 For each sense term $S_i \in Syn_1$ 1 Compute associative frequency *af* for S_i to other senses $S_k \in Syn_k$, $Syn_k \subseteq T_k$ and $T_1 \neq T_k$ 1.1 return the sense S_1 with highest score Max(*af*) 2 Compute associative frequency *af* for S_i to k-order parent senses $PS_k \in P(Syn_k)$, $P(Syn_k) \subseteq T_k$ and $T_1 \neq T_k$

2.1 return the sense S_p with highest score Max(*af*)

3 Record the most popular sense S_w offered by WordNet


Select the sense according to the preference ranking to represent the word term T_1 Return the Best Sense to represent word term T_1

Aggregate all sense from all important word terms to represent signature of the document D

Strategy II: Most Specific Parent

Example: Sun is the center of our <u>solar system</u>.

"(P)Synset 1" will be selected as the best sense for word "Sun"

Strategy III: Frequency

For each metadata document $D \in C_1$ Get the list of synsets for each word term $T_1 \in D$ For each synset Syn_1 of the word term T_1 For each sense term $S_i \in Syn_1$ 1 Compute associative frequency d

Compute associative frequency af for S_i to other senses $S_k \in Syn_k$, $Syn_k \subseteq T_k$ and $T_1 \neq T_k$

1.1 return the sense S_1 with highest score Max(*af*)

2 Compute associative frequency af for S_i to k-order parent senses $PS_k \in P(Syn_k)$, $P(Syn_k) \subseteq T_k$ and $T_1 \neq T_k$ 2.1 return the sense S_p with highest score Max(af)

Record the most popular sense S_w offered by WordNet

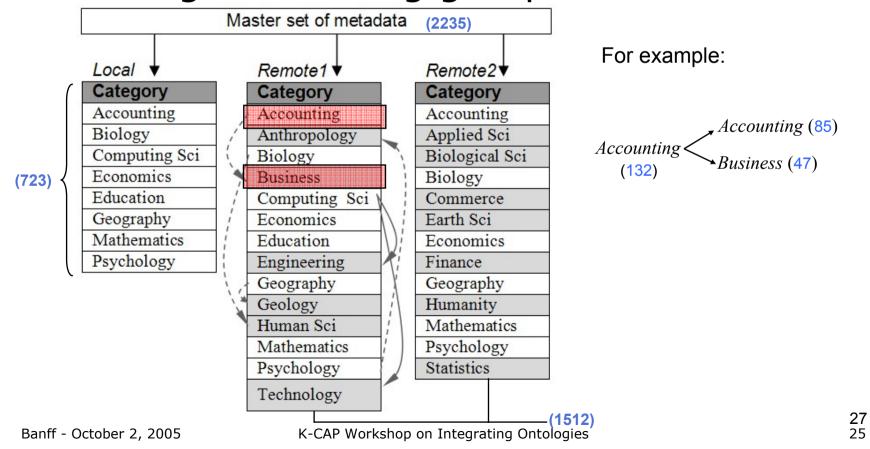
Select the sense according to the preference ranking to represent the word term T_1 Return the Best Sense to represent word term T_1

Aggregate all sense from all important word terms to represent signature of the document D

3

Evaluation Experiment

- 3 independent databases are set up: local, remote1 and remote2
- Local represents the local repository (training dataset)
- remote1 and remote2 represent distant repositories (testing dataset)
- Effectiveness of retrieval measured by number of relevant concepts returned from remote repositories


Dataset

• 8 different categories of 2235 metadata are acquired from various sources

Category	Sources	No. of metadata	
Accounting	Business Source Premier Publications	382	
Biology	Biological and Agricultural Index, BioMed Central Online Journals	315	
Computing Science	Citeseer	320	
Economics	American Economic Association's electronic database	353	
Education	Educational Resource Information Center	307	
Geography	Geobase	237	
Mathematics	arXiv.org, MathSciNet	157	
Psychology	Psychology PsycINFO, ERIC		
	Total	2235	

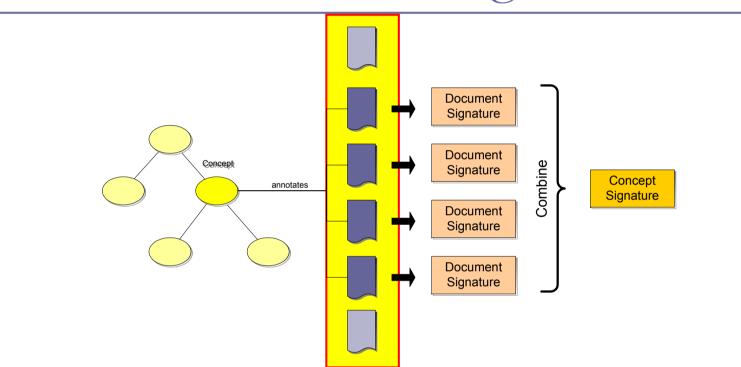
Metadata are distributed randomly to training and testing group

Results

	Precision		Recall		F-measure	
Category	S	K	S	K	S	K
Accounting	1.00	0.67	1.00	0.75	1.00	0.71
Biology	0.75	0.75	0.75	0.75	0.75	0.75
Computing Sci	1.00	0.50	1.00	0.50	1.00	0.50
Economic	1.00	0.75	1.00	0.75	1.00	0.86
Education	1.00	0.50	1.00	0.75	1.00	0.45
Geography	0.75	0.50	0.75	0.50	0.75	0.50
Mathematics	0.67	0.33	0.67	0.50	0.67	0.40
Psychology	0.67	0.33	0.67	0.67	0.67	0.44
Average	0.86	0.54	0.86	0.65	0.86 S = Sid	0.58 gnature-base

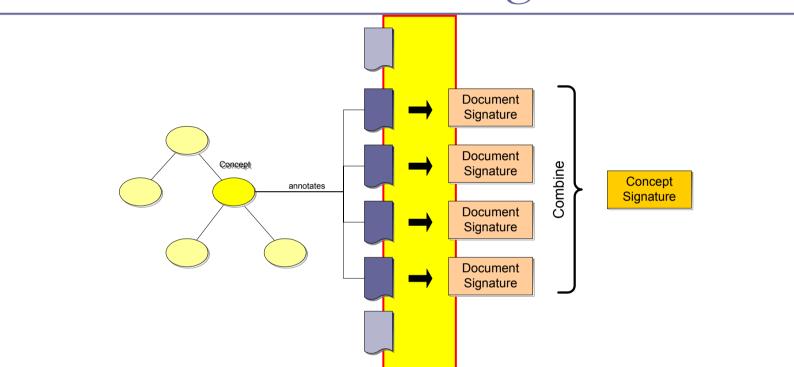
S = Signature-based K = Keywords-based

Discussion

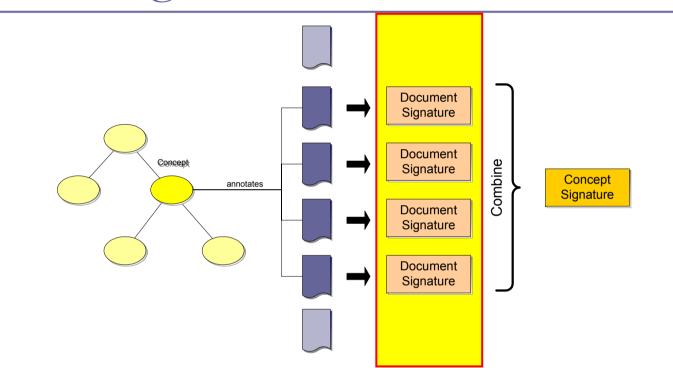

Only basic evaluation but shows promise

Many unanswered questions:

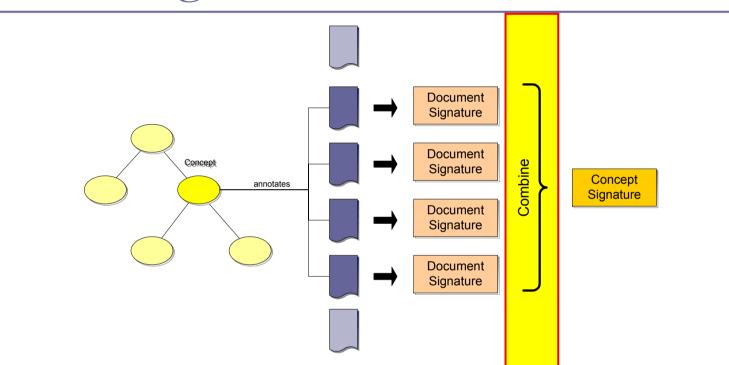
- Number/Size of the documents per concept
- Nature of the documents
- Specificity of the domain
- Shifting context


Future: Text Processing

summarization, significant phrases, etc.

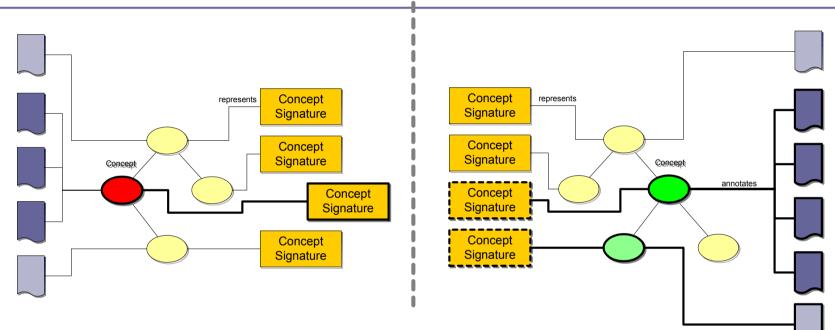

Future: Sense Disambiguation

explore WordNet structure and document structure (now only direct parent)


Future: Signatures

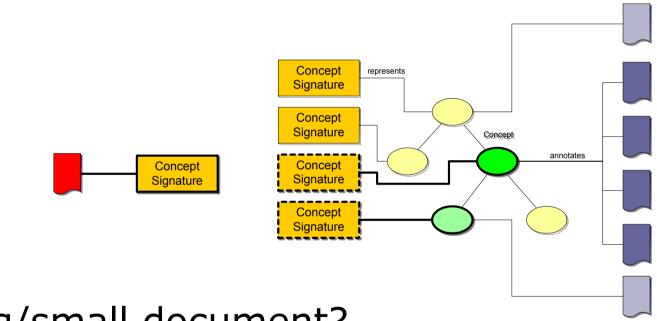
 structure, include domain-specific words not found in WordNet, etc.
 Concept differentiation capability

Future: Signature Combination

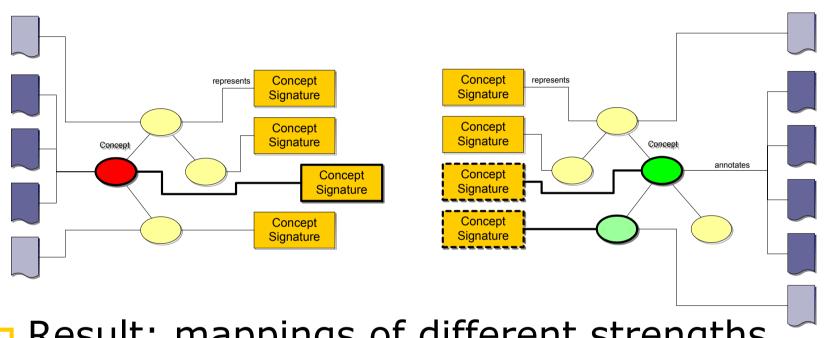


Utilize WordNet structure when merging signatures Utilize ontology structure (?)

Banff - October 2, 2005

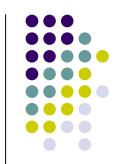

App: Distributed Search with Concepts

Current implementationSupport in the middleware


App: New Document Annotation

- How big/small document?
- Thresholds issue
- □ Signature libraries for well known classifications (ACM CCS) → web-service

App: Ontology Alignment



- Result: mappings of different strengths
 Threshold issue
- As a complement to other methods

Comments and Suggestions

Email: mhatala@sfu.ca

Semantic Association of Taxonomybased Standards Using Ontology

Hung-Ju Chu, Randy Y. C. Chow, Su-Shing Chen

Computer and Information Science and Engineering

Raja R.A. Issa, Ivan Mutis

Rinker School of Building Construction

University of Florida

10/2/2005

Methodology for matching complementary taxonomies (hierarchically structured standards) to facilitate cross-referencing required in workflows.

Research Focus

Target Application

- Building Construction Domain
- Masterformat [1] & Uniformat II [2]

First level of Masterformat

MasterFormatTM 2004 Edition – Numbers & Titles 6/8/04

Division Numbers and Titles

PROCUREMENT AND CONTRACTING REQUIREMENTS GROUP

Division 00 Procurement and Contracting Requirements

SPECIFICATIONS GROUP

GENERAL REQUIREMENTS SUBGROUP Division 01 General Requirements

FACILITY CONSTRUCTION SUBGROUP

Division 02	Existing Conditions
Division 03	Concrete
Division 04	Masonry
Division 05	Metals
Division 06	Wood, Plastics, and
	Composites
Division 07	Thermal and Moisture
	Protection
Division 08	Openings
Division 09	Finishes
Division 10	Specialties
Division 11	Equipment
Division 12	Furnishings
Division 13	Special Construction
Division 14	Conveying Equipment
Division 15	Reserved
Division 16	Reserved
Division 17	Reserved
Division 18	Reserved
Division 19	Reserved

SITE AND INFRASTRUCTURE SUBGROUP

Division 30	Reserved
Division 31	Earthwork
Division 32	Exterior Improvements
Division 33	Utilities
Division 34	Transportation
Division 35	Waterway and Marine
	Construction
Division 36	Reserved
Division 37	Reserved
Division 38	Reserved
Division 39	Reserved

PROCESS EQUIPMENT SUBGROUP

Division 40	Process Integration
Division 41	Material Processing and
	Handling Equipment
Division 42	Process Heating,
	Cooling, and Drying
	Equipment
Division 43	Process Gas and Liquid
	Handling, Purification,
	and Storage Equipment
Division 44	Pollution Control
	Equipment

First 3 levels of Uniformatll

ASTM Uniformat II Classification for Building Elements (E1557-97)

Level 1	Level 2	Level 3	
Major Group Elements	Group Elements	Individual Elements	
A SUBSTRUCTURE	A10 Foundations	A1010Standard FoundationsA1020Special FoundationsA1030Slab on Grade	
	A20 Basement Construction	A2010 Basement Excavation A2020 Basement Walls	
B SHELL	B10 Superstructure	B1010 Floor Construction B1020 Roof Construction	
	B20 Exterior Enclosure	B2010 Exterior Walls B2020 Exterior Windows B2030 Exterior Doors	
	B30 Roofing	B3010 Roof Coverings B3020 Roof Openings	
C INTERIORS	C10 Interior Construction	C1010 Partitions C1020 Interior Doors C1030 Fittings	
	C20 Stairs	C2010 Stair Construction C2020 Stair Finishes	
	C30 Interior Finishes	C3010 Wall Finishes C3020 Floor Finishes C3030 Ceiling Finishes	
D SERVICES	D10 Conveying	D1010 Elevators & Lifts D1020 Escalators & Moving Walks D1090 Other Conveying Systems	
	D20 Plumbing	D2010Plumbing FixturesD2020Domestic Water DistributionD2030Sanitary WasteD2040Rain Water DrainageD2090Other Plumbing Systems	
	D30 HVAC	D3010Energy SupplyD3020Heat Generating SystemsD3030Cooling Generating SystemsD3040Distribution SystemsD3050Terminal & Package UnitsD3060Controls & InstrumentationD3070Systems Testing & BalancingD3090Other HVAC Systems &	
	D40 Fire Drotection	Equipment D4010 Sprinklers	

Usage of Standards in Workflows

- Cost Estimation
- Code compliance checking

Problems

- The routine workflows are costly.
- \$15.8 billion annual interoperability cost in capital facilities industry in 2002

Challenges for Matching

- Objects are classified with complementary views
- Many to many matching
- Mapping semantics are implicit
- Taxonomies are changing

Mapping Semantics

B SHELL B20 EXTERIOR CLOSURE B2010 EXTERIOR WALLS

What Masterformat objects should B2010 be mapped to?

Foundation of This Research

• The observation that mapping semantics can be found in project specifications

Project Specification Example

PPD (Preliminary Project Descriptions)
 B SHELL
 B20 EXTERIOR CLOSURE
 B2010 EXTERIOR WALLS

 Exterior Wall Framing: Coldformed, light gage steel studs, Cshape, galvanized finish.

Our Approach

- FORMALIZATION OF TAXONOMY
- ONTOLOGY-BASED SEMANTIC EXTRACTION
- MEASUREMENT OF AFFINITY

FORMALIZATION OF TAXONOMY

- Step 1: relation set identification
- Step 2: relation statements construction
- Step 3: normalization
- Step 4: generalization

Step 1: Relations

- Primitive: unambiguous; static; intrinsic properties of objects; time; space; intention; set relationship
- Derived

Masterformat Example

Division 5- Metals 05100 Structural Metal Framing 05120 Structural steel 05140 Structural aluminum 05160 Metal framing systems 05400 Cold formed metal framing 05410 Load bearing metal studs 05420 Cold formed metal joists 05430 Slotted channel framing Division 6 - Wood and plastics 06100 Rough carpentry 06110 Wood framing 06400 Architectural woodwork 06460 Wood frames

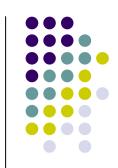
Relation Examples

- used_for (class-class, human intention): purpose
- *kind_of* (class-class, intrinsic): containment relation of attributes of instances.
- instance_of (instanceclass, intrinsic): membership
- *made_of* (class-class, intrinsic): material component

Table 1. Mathematical Properties of the relations

Relations	Transitive	reflexive	antisymmetric
used for	-	-	-
kind of	+	+	+
instance of	+	+	+
made of	+	-	-

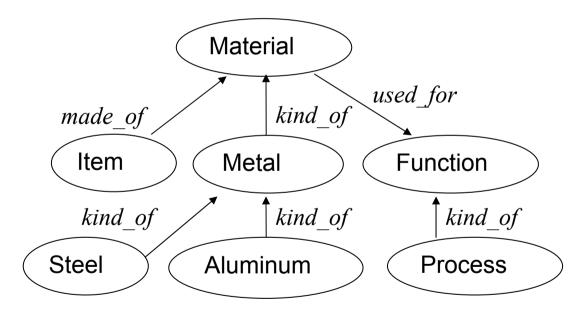
Step 2: relation statements


• Subject-relation-object triple

Examples:

- Metals (D5), Wood (D6), Plastics (D6_1) are *instance_of* Material (root) → (D5_root, D6_root, D6_1_root)
- Metals (D5) are used_for framing \rightarrow 05100_1
- Structural is a *kind_of* "metal framing" (05100_1) \rightarrow 05100
- Cold formed is a *kind_of* "metal framing" (05100_1) \rightarrow 05400
- Studes are *made_of* Metals (D5) \rightarrow (05410_1)
- "Load bearing metal studs" are kind_of Metal studs (05410_1)
 → 05410
- 05410 is used_for 05400 \rightarrow (05400_05410)

Step 3: normalization

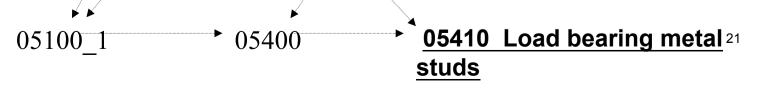

- redundancy elimination
- conflict detection
- implication detection

Step 4: generalization

• Synthesize subjects/objects into higher-level concepts connected by the same set of relations

{metals, wood, plastics ..} are instance_of Material
 {stud, joist ..}are instance_of Item
 {framing, ..}are instance_of Function
{cold formed, structural ..} are instance_of Process

Linguistic processing


inflection, derivation, compounds, and synonyms

ONTOLOGY-BASED SEMANTIC EXTRACTION

Linguistic Processing such as chunk parsing, and grammatical function recognition [4]
Matching between relation statements and text

B2010 Exterior Wall:
1. Exterior Wall Framing: Cold-formed,
light gage steel studs, C-shape,
galvanized finish, 6" metal thickness

MEASUREMENT OF AFFINITY

- Number of relation statements matched
- Number of keywords matched
- Quality of matches
 - 1. positions in taxonomy
 - 2. information content: Inverse document frequency (IDF) [3]
 - 3. counts in taxonomy

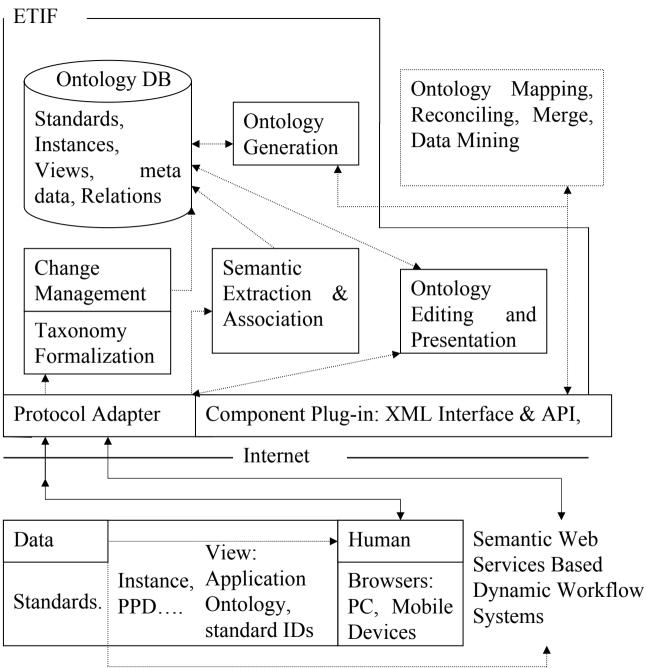


Figure 2. Extensible Taxonomy-based Integration Framework (ETIF)

23

Conclusion

- Illustration of effective use of taxonomy for improving interoperability in a workflow system with building construction as the target example.
- Illustration of a systematic approach to semantic association of complex complementary taxonomies through knowledge discovery from associated specification documents.

Future Works

- Refinement of the affinity measure
- Integration of the algorithms with dynamic workflow systems through semantic web services.

Acknowledgements

• This work is partially supported by an NSF research grant ITR-0404113

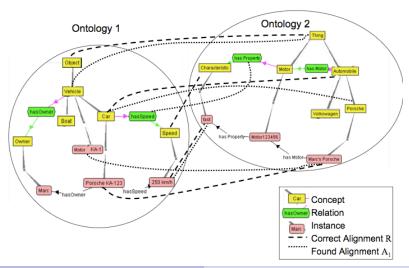
References

- [1] Construction Specifications Institute. MasterFormat 95[™]: Alexandria, VA: The Construction Specifications Institute, 1995 edition.
- [2] Charette, R. P. and Marshall, H. E.: UNIFORMAT II Elemental Classification for Building Specifications, Cost Estimating, and Cost Analysis, NISTIR 6389, Gaithersburg, MD: National Institute of Standards and Technology, October, 1999
- [3] Church, K. W. and Gale, W. A. : Inverse document frequency (IDF): A measure of deviations from Poisson. In Yarowsky, D. and Church, K., editors, Proceedings of the Third Workshop on Very Large Corpora, pages 121--130. Association for Computational Linguistics. 1995.
- [4] Maedche, A., Neumann, G., Staab, S.: Bootstrapping an Ontology-Based Information Extraction System, Intelligent Exploration of the Web, Springer 2002.

Relaxed precision and recall for ontology matching

Marc Ehrig¹ Jérôme Euzenat²

University of Karlsruhe Karlsruhe, Germany ehrig@aifb.uni-karlsruhe.de



Monbonnot, France Jerome.Euzenat@inrialpes.fr

The problem

Constraints on generalized measures A general proposal satisfying the constraints Concrete measures Conclusions

Alignments

Marc Ehrig, Jérôme Euzenat Relaxed precision and recall for ontology matching

Alignments

Definition (Alignment, correspondence)

Given two ontologies O and O', an alignment between O and O' is a set of correspondences (i.e., 4-uples): $\langle e, e', r, n \rangle$ with

- $e \in O$ and $e' \in O'$ being the two matched entities,
- r being a relationship holding between e and e', and
- *n* expressing the level of confidence [0..1] in this correspondence.

The problem

Constraints on generalized measures A general proposal satisfying the constraints Concrete measures Conclusions

Precision and recall

Definition (Precision, Recall)

Given a reference alignment R, the precision of some alignment A is given by

$$\mathsf{P}(A,R) = \frac{|R \cap A|}{|A|}$$

and recall is given by

$$R(A,R)=\frac{|R\cap A|}{|R|}.$$

The problem Constraints on generalized measures

Conclusions

Relaxed precision and recall for ontology matching

It does not make a difference between a nearly correct alignment $(A_1 \text{ or } A_2)$ and a bad one (A_3) .

Marc Ehrig, Jérôme Euzenat

ω	(R,R)	(R, A_1)	(R, A_2)	(R, A_3)
precision	1.0	0.2	0.25	0.2
recall	1.0	0.2	0.2	0.2

Problem with precision and recall

A general proposal satisfying the constraints

The problem

Constraints on generalized measures A general proposal satisfying the constraints Concrete measures Conclusions

Outline

- 2 Constraints on generalized measures
- 3 A general proposal satisfying the constraints
- 4 Concrete measures

The problem

Constraints on generalized measures A general proposal satisfying the constraints Concrete measures Conclusions

Solution

- Measuring the "nearly".
- through generalizing precision and recall.

Precision and recall - Generalized

Definition (Generalized precision and recall)

Given a reference alignment R and an overlap function ω between alignments, the precision of an alignment A is given by

$$P_{\omega}(A,R) = rac{\omega(A,R)}{|A|}$$

and recall is given by

$$R_{\omega}(A,R) = rac{\omega(A,R)}{|R|}.$$

Summary

The main constraint faced by the proximity is the following:

$$|A \cap R| \leq \omega(A, R) \leq \min(|A|, |R|)$$

This is indeed a true generalization because, $|A \cap R|$ satisfies all these properties.

Overlap proximity

Definition (Overlap proximity)

The overlap proximity ω between two sets A and R is defined by:

$$\omega(A,R) = \sum_{\langle a,r\rangle \in \mathcal{M}(A,R)} \sigma(a,r)$$

in which M(A, R) is a matching between the elements of A and R and $\sigma(a, r)$ a proximity function between two elements.

Choice: the structure of the function.

Matching correspondences

- A matching between alignments is a set of correspondence pairs, i.e., $M(A, R) \subseteq A \times R$.
- We restrict to matchings in which an entity from the ontology does not appear twice. $|M(A, R)| \le min(|A|, |R|)$.

In precision and recall any correspondence is identified only with itself.

The natural choice is to select the best match because this guarantees that this function generalizes precision and recall.

Best match

Definition (Best match)

The best match M(A, R) between two sets of correspondences A and R, is the subset of $A \times R$ in which each element of A (resp. R) belongs to only one pair, which maximizes the overall proximity:

$$M(A, R) \in Max_{\omega(A,R)}\{M \subseteq A \times R\}$$

Choice: 1-1 match

Correspondence proximity

 σ measures the proximity between two matched correspondences:

$$\sigma: \mathcal{M}(A, R) \longrightarrow [0 \ 1]$$

$$\sigma(\langle e_a, e'_a, n_a, r_a \rangle, \langle e_r, e'_r, n_r, r_r \rangle) = Aggr(\sigma_{pair}(\langle e_a, e_r \rangle, \langle e'_a, e'_r \rangle), \sigma_{rel}(r_a, r_r), \sigma_{conf}(n_a, n_r))$$

We will only consider normalized proximities, i.e., measures whose value ranges within the unit interval [0 1], because this is a convenient way to guarantee that

$$omega(A, R) \leq min(|A|, |R|)$$

Constraints on the aggregation function

The constraints on the aggregation function (Aggr) are: normalization preservation if $\forall i, 0 \le c_i \le 1$ then $0 \le Aggr_i c_i \le 1$; maximality if $\forall i, c_i = 1$ then $Aggr_i c_i = 1$; local monotonicity if $\forall i \ne j, c_i = c'_i = c''_j$ and $c_j \le c'_j \le c''_j$ then $Aggr_i c_i \le Aggr_i c'_i \le Aggr_i c''_i$.

Correspondence proximity

Definition (Correspondence proximity)

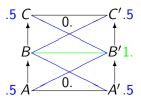
Given two correspondences $\langle e_a, e'_a, r_a, n_a \rangle$ and $\langle e_r, e'_r, r_r, n_r \rangle$, their proximity is:

$$\sigma(\langle e_a, e'_a, r_a, n_a \rangle, \langle e_r, e'_r, r_r, n_r \rangle) =$$

 $\sigma_{\textit{pair}}(\langle e_{a}, e_{r} \rangle, \langle e_{a}', e_{r}' \rangle) \times \sigma_{\textit{rel}}(r_{a}, r_{r}) \times \sigma_{\textit{conf}}(n_{a}, n_{r})$

Choice: multiplication as aggregation

Precision/Recall complies to our constraints


Definition (Equality proximity)

The equality proximity is charaterized by:

$$\sigma_{pair}(\langle e_a, e_a' \rangle, \langle e_r, e_r' \rangle) = \begin{cases} 1 & \text{if } \langle e_a, e_a' \rangle = \langle e_r, e_r' \rangle \\ 0 & \text{otherwise} \end{cases}$$
$$\sigma_{rel}(r_a, r_r) = \begin{cases} 1 & \text{if } r_a = r_r \\ 0 & \text{otherwise} \end{cases}$$
$$\sigma_{conf}(n_a, n_r) = \begin{cases} 1 & \text{if } n_a = n_r \\ 0 & \text{otherwise} \end{cases}$$

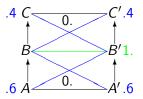
Symmetric measure

- If the found object is a direct subclass, superclass, subproperty, superproperty, of the expected one, then the proximity will be .5, 0 otherwise.
- If the found relation is \leq instead of =, then the proximity is also .5.

This is a fully symmetric measure (i.e., $\omega(A, R) = \omega(R, A)$).

Symmetric measure

Definition (Symmetric proximity)

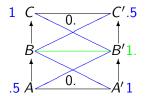

The symmetric proximity is characterized by:

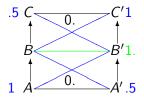
$$\sigma_{pair}(\langle e_a, e'_a \rangle, \langle e_r, e'_r \rangle)$$
 as defined in Table 1
 $\sigma_{rel}(r_a, r_r)$ as defined in Table 2
 $\sigma_{conf}(n_a, n_r) = 1 - |n_a - n_r|.$

Correction effort measure

Measures the effort required by a user to correct an incorrect alignment.

- edit distance-like in which we count the number of operations required for correcting the error.
- very related to the kind of alignment editor available.


The measure is not symmetric because it is easier to change some class for its superclass (very often only one) than for one of its subclasses.


Oriented measure

Different errors will have different impact on the correctness and completeness of answers to an instance retrieving system.

For instance, if instead of an expected class, the alignment find a superclass (in the target ontology), the result will not affect recall (more answers will be returned) but will affect precision.

We use two different ω oriented towards measuring the impact on precision or recall.

This measure is not symmetric.

Marc Ehrig, Jérôme Euzenat

Relaxed precision and recall for ontology matching

Evaluation on a simple example

ω	(R,R)		(R, A_1)		(R, A_2)		(R, A_3)	
	Р	R	P	R	Р	R	P	R
standard	1.0	1.0	0.2	0.2	0.25	0.2	0.2	0.2
symmetric	1.0	1.0	0.4	0.4	0.375	0.3	0.2	0.2
edit	1.0	1.0	0.44	0.44	0.35	0.28	0.2	0.2
oriented	1.0	1.0	0.5	0.5	0.375	0.4	0.2	0.2

Conclusion

We introduced a framework for generalizing precision and recall. We defined 3(+2) measures implementing this framework.

- they keep precision and recall untouched for the best alignment;
- they help discriminating between irrelevant alignments and not far from target ones;
- specialized measures are able to emphasize some characteristics of alignments: ease of modification, correctness or completeness.

Limitations

- syntactic flavour: semantically equivalent alignments will not be considered the same.
- There has been quite some choices made (see Choice mentions).
- Some general principles to choose weights are required.

Questions?

ehrig@aifb.uni-karlsruhe.de Jerome.Euzenat@inrialpes.fr

Searching Web Resources Using Ontology Mappings

Dragan Gašević and Marek Hatala

Laboratory for Ontological Research School of Interactive Arts and Technology Simon Fraser University Surrey, Canada <u>http://lore.iat.sfu.ca</u> Email: {dgasevic, mhatala}@sfu.ca

Outline

Introduction

- Metadata, Ontologies, and Web resources
- Representation of ontologies and mappings
- Ontology mapping based search algorithm
- Evaluation
- Conclusions

Introduction

- Collections of web resources:
 - digital libraries, community-based object repositories, dispersed web resources in many individual institutions
- Resources
 - typically not interconnected into the web
- Interoperability
 - subject categories, taxonomies, ideally richer ontologies
 - diversity among institutions
- Ontology mapping as a solution

Web resource metadata and domain ontologies

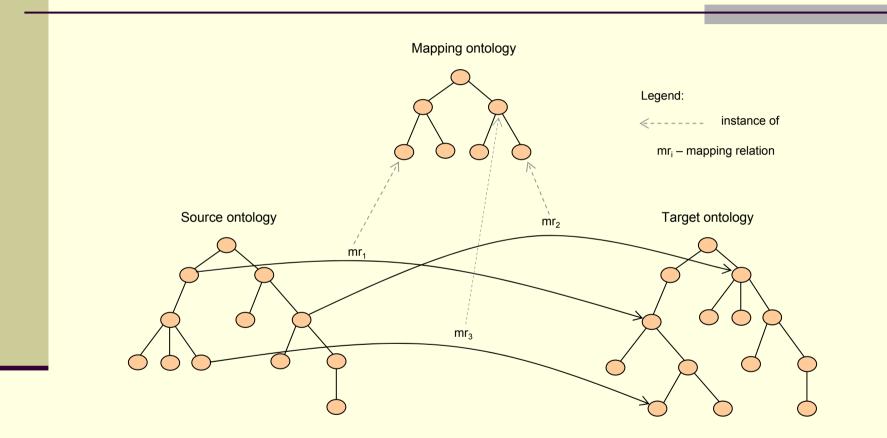
- Description of web resources
 - Metadata schema: Dublin Core (DC)
 - Predefined set of relevant fields
 - DC is defined as an RDF Schema
 - Resource are annotated with the schema instances
 - instance (individual) level

Web resource metadata and domain ontologies

- Semantic annotations
 - From ontologies
 - RDFS, OWL,...
 - Classifications as ontology schemas
 - Dewey Decimal System, ACM CCS, directories, …
 - Complement metadata
 - Metadata are ontology schema instances
 - Classification are ontology schemas
 - Conceptual mismatch
 - Possible in OWL
 - Problems with implementation

Web resource metadata and domain ontologies

- Multiple domain ontologies or classifications
 - Different systems have different needs
 - Digital libraries library classifications
 - Ontologies or taxonomies for domain specific application


. . . .

How to search multiple web resource collections based on multiple classifications/taxonomies/ /domain ontologies?

Multiple domain ontologies

- Ontology mappings
 - Define how concepts from different ontologies relate each other
- Mapping ontology
 - Reusable problem-solving components [Crubézy et al., 2003]
 - Mapping ontology between domain and method ontologies
 - MApping FRAmework (MAFRA) [Maedche et al, 2002]
 - Semantic bridge ontology

Mapping ontology approach

Multiple domain ontologies

- Ontology mappings
 - Define how concepts from different ontologies relate each other
- Mapping ontology
 - Reusable problem-solving components [Crubézy et al., 2003]
 - Mapping ontology between domain and method ontologies
 - MApping FRAmework (MAFRA) [Maedche et al, 2002]
 - Semantic bridge ontology

Summary

- There is no widely accepted solution
- Different mapping types

Our approach

- Representation of ontologies and ontology mappings
 - Simple Knowledge Organization System (SKOS)
 - A recent RDF(S)/OWL-based W3C effort
 - Three vocabularies:
 - SKOS Core
 - SKOS Extensions
 - SKOS Mapping

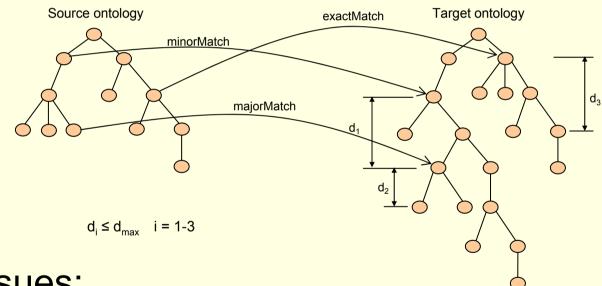
SKOS Core

SKOS Core	Class/Property	Description							
ConceptScheme	Class	A set of concepts, optionally including statements about semantic relationships between those concepts.							
Concept	Class	A resource is a conceptual resource.							
inScheme	Property	A concept is a part of a particular concept scheme							
hasTopConcept	Property	A link between the concept scheme and the concepts that are the top- level concepts in the generalization hierarchy.							
prefLabel and altLabel	Property	Preferred and alternative lexical labels of a resource.							
broader	Property	A concept is broader in meaning (i.e. more general) than another.							
narrower Property		A concept is narrower in meaning (i.e. more specific) than another Inverse to the <i>broader</i> property. Transitive property.							

SKOS Extensions

- narrowerGeneric and broaderGeneric are subproperties of narrower and broader, respectively
- Equivalent to rdfs:subPropertyOf

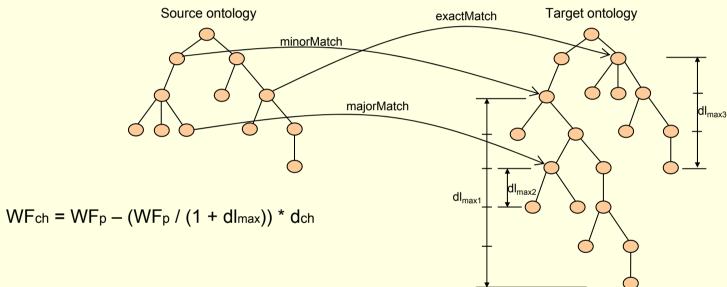
SKOS Mappings


Rich set of mapping properties

SKOS Mapping Property	Description					
mappingRelation	The super-property of all properties expressing information about how to create mappings between concepts from different conceptual schemes.					
broadMatch	The set of resources properly indexed against the first concept is a subset of the set of resources properly indexed against concept the second concept.					
narrowMatch	The set of resources properly indexed against the first concept is a superset of the set of resources properly indexed against concept the second concept.					
exactMatch	The set of resources properly indexed against the first concept is identical to the set of resources properly indexed against the second.					
majorMatch	The first concept shares more than 50% of its members with the set of resources properly indexed against the second concept.					
minorMatch	The set of resources properly indexed against the first concept shares less than 50% but greater than 0 of its members with the set of resources properly indexed against the concept.					

- Multiple ontologies
- Mapping ontology defines relations between ontologies
- Observed case:
 - Two ontologies (source and target), but the algorithm is not limited to just two solution
 - Input are concepts of the source ontology
 - Results are concepts of the target ontology
 - Different mapping relations have different influence on ranking

Initial version


Depth-limited search (d_{max})

Issues:

- the resulting concept list is completely discrete
- some relevant child concepts can be taken out of consideration due to depth limit

Improved version

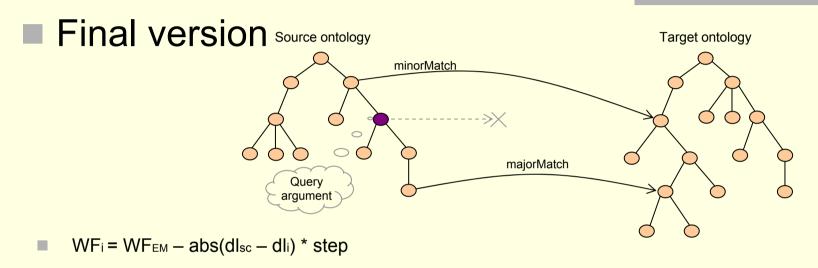
- WFch weight factor of the child concept;
- WF_p weight factor of the matched (parent) concept;
- dlmax maximal depth level of the matched (parent) concept;
- d_{ch} distance of the child concept from the matched (parent) concept

Improved version

```
function search-concept (input-concept, WFEM)
    cluster-names := { "exactMatch", "broadMatch", "exactMatchChildren",
    "broadMatchChildren", "narrowMatch", "narrowMatchChildren" "majorMatchChildren";
    "majorMatchChildren", "minorMatch", "minorMatchChildren"};
```

```
clusters := create-hash-map();
Result := {};
```

```
for-each name in cluster-names
    matched-concepts := get-matched-concepts(name, input-concept);
    clusters[name] := matched-concepts;
```


```
end-for-each
```

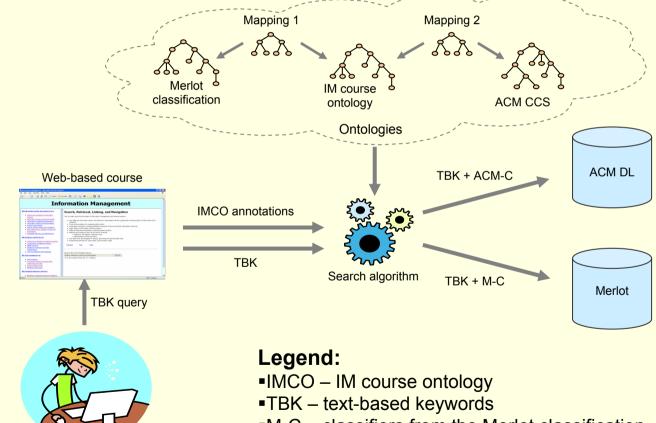
```
for-each name in cluster-names
    for-each concept in clusters[name]
        put-in-sorted-list(result, concept, calculate-WF(concept, name));
    end-for-each
end-for-each
```

```
return result;
```

```
end-function
```

10/4/2005

- WFEM weight factor of the exact match relation predefined for the case when there is a mapping relation between the query argument and the target ontology;
- dlsc depth level of the query argument;
- dli depth level of a parent/child concept of the query argument that has a mapping relation with the target ontology;
- step predefined value that specifies the impact of the distance between the query argument and its child/parent concept *i*.

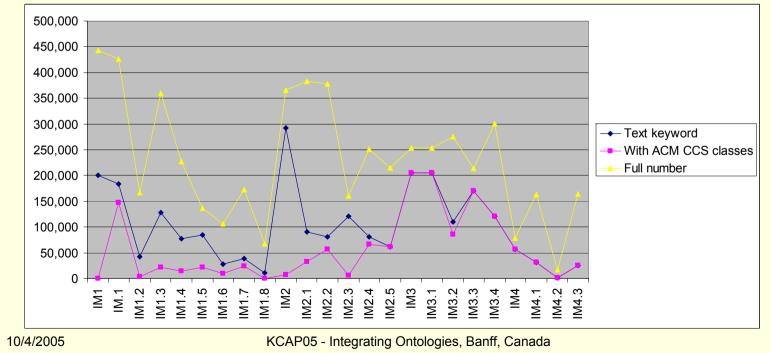

Final version

end-function

Implementation

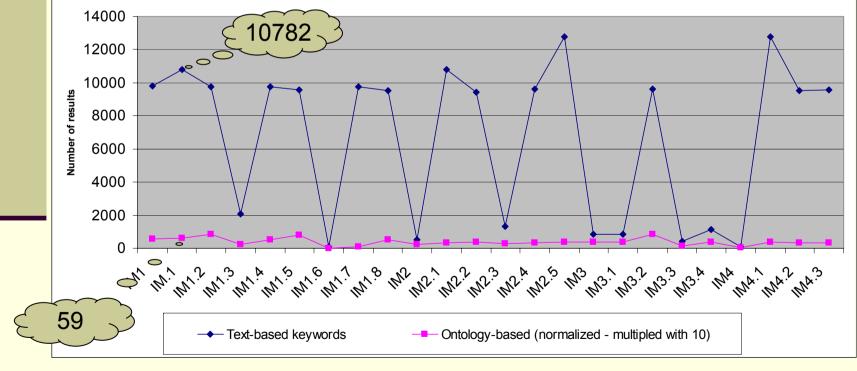
- Algorithm implementation
 - Jess and OWLJessKB
 - Component that can be used in different applications

Evaluation environment


M-C – classifiers from the Merlot classification

ACM-C – classifiers form the ACM CCS

KCAP05 - Integrating Ontologies, Banff, Canada


10/4/2005

- ACM Digital Library
 - Results opposite to our expectations
 - OR operator did not give expected results
 - Verity search engine
 - Threshold
 - Big number of classifiers decreases the result set

Merlot – Learning object repository

- Merlot classification system general purpose one
- Results according to our expectations

10/4/2005

Merlot – Learning object repository

Concept	IM1	IM.1	IM1.2	IM1.3	IM1.4	IM1.5	IM1.6	IM1.7	IM1.8	IM2	IM2.1	
Keyword-based search	9814	10782	9760	2094	9769	9578	114	9760	9542	540	10797	
Ontology-based search	55	59	85	22	53	80	1	9	52	25	35	
Percent	0.56	0.55	0.87	1.05	0.54	0.84	0.88	0.09	0.54	4.63	0.32	
Num. of classification tags	1	1	3	2	1	1	1	1	1	2	2	
Defined match or not	Y	Y	Y	Y	Y	Y	Ν	Y	Ν	Y	Ν	
Concept		IM2.2	IM2.3	IM2.4	IM2.5	IM3.2	IM3.3	IM3.4	IM4	IM4.1	IM4.2	IM4.3
Keyword-based		9449	1321	9638	12782	9614	418	1140	72	12788	9544	9563
Ontology-based		36	26	35	38	85	14	40	6	38	31	31
Percent		0.38	1.97	0.36	0.30	0.88	3.35	3.51	8.33	0.30	0.32	0.32
Num. of classification tags		2	2	2	2	3	3	3	2	2	2	2
Defined mapping or not		Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν
10/4/2005			KCAP05	 Integration 	ing Ontolo	gies, Ban	f, Canada	1				23

Conclusions and future work

- The ontology mappings algorithm to get semantically relevant search results
- Initial evaluation results are promising
- In the future:
 - Evaluation with other similar approaches
 - eduSource Communication Layer (ECL) federated search engine
 - Examining on the OWL language
 - Improving ranking algorithm different influence of different properties
 - Automatic mapping discovery using semantic signatures

Searching Web Resources Using Ontology Mappings

Dragan Gašević and Marek Hatala

Laboratory for Ontological Research School of Interactive Arts and Technology Simon Fraser University Surrey, Canada <u>http://lore.iat.sfu.ca</u> Email: {dgasevic, mhatala}@sfu.ca

GMO: A Graph Matching for Ontologies

Wei Hu, Ningsheng Jian, Yuzhong Qu & Yanbing Wang

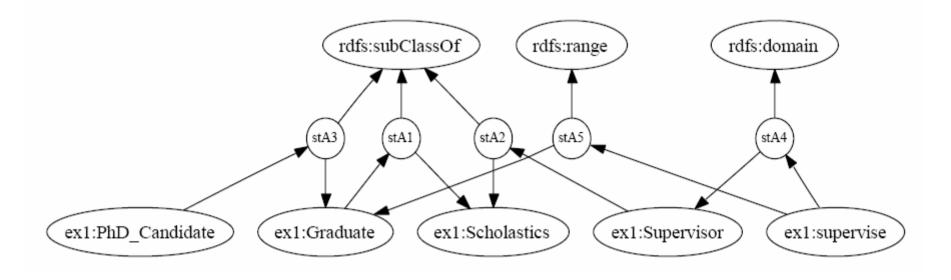
Dept. Computer Science & Engineering Southeast University, China

1

Outline

- **Introduction**
- **RDF Bipartite Graph**
- **Structural Similarity for Ontology**
- Implementation
- **Experimental Results**
- **Discussion**

Introduction


Two Distinguished Features

- It uses directed bipartite graphs (statement vs. entity) to represent ontologies instead of using labeled graphs or RDF graphs.
- A new measure of structural similarity for web ontologies. This measure will play an important role in ontology matching, especially when lexical similarity could not be gained.
- **One of the main components in Falcon-AO**

Directed RDF Bipartite Graph

RDF Bipartite Graph Model Directed Bipartite Graph

Matrix Representation

The Adjacent Matrix of Ontology

$$A = \begin{pmatrix} 0 & 0 & A_{ES} \\ 0 & 0 & A_S \\ A_E & A_{OP} & 0 \end{pmatrix}$$

The Idea of Our Measure

- Similarity of two entities from two ontologies comes from the accumulation of similarities of involved statements (triples) taking the two entities as the same role (subject, predicate, object) in the triples.
- Similarity of two statements comes from the accumulation of similarities of involved entities (including external entities) of the same role in the two statements being compared.

Structural Similarity for Ontology

The updating equations

0

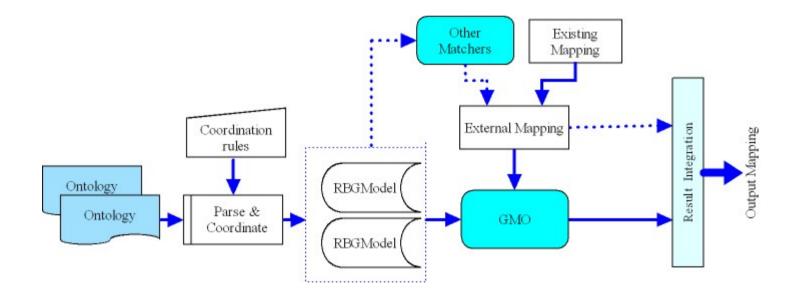
 B_S 0

Refinement 0

Classify the entities described in a given ontology as properties, classes and instances.

$$O_k = \begin{pmatrix} P_k & & \\ & C_k & \\ & & I_k \end{pmatrix}$$

Refinement


Two advantages

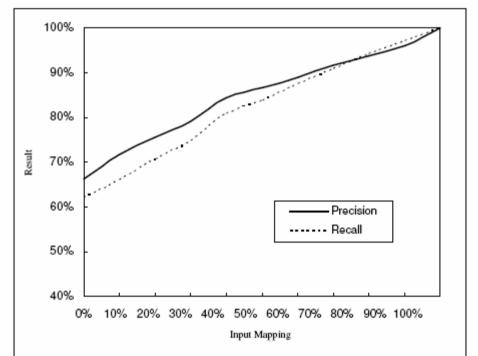
- Good computing performance due to the matrix computation with blocks.
- Avoid the unnecessary computing of similarity between different kinds of entities.

Implementation

A Matching Process of GMO

Coordinating Ontologies

Discarding (ontology header, etc.)
Merging (owl:equivalentClass, etc.)
Inference
List (rdfs:member)


LMO

A Linguistic Matching for Ontologies Another Matcher in Falcon-AO

Effect of GMO

We test the effectiveness of GMO on OAEI 2005 benchmark test cases, by taking some percentage of standard matched pairs as input mapping to GMO.

Average Precision & Recall

Performance of Falcon-AO

The partial experiment results of Falcon-AO

	101-104	201 - 210	221 - 266	301-304	Total
Prec.	1.0	0.96	0.86	0.93	0.89
Reca.	1.0	0.95	0.82	0.81	0.85
F-M.	1.0	0.95	0.83	0.86	0.87

Discussion 0

Advantages

- GMO uses directed bipartite graphs to represent web ontologies instead of using labeled graph or RDF graph.
- Our similarity model emphasizes the structural similarity based on the connection similarity, and does not depend on or mix up with lexical similarity.
- In addition, GMO can make use of a set of matched pairs found previously by other approaches as external entities.

Discussion

Weaknesses

- It performs not so well when the ontologies to be matched have a great difference in structure.
- Sometimes, it is really hard to distinguish the exact mapping only by structural features.
- It is not easy to select appropriate coordination rules due to the tradeoff between the cost of inference and the quality of mapping.

Main Reference

- V. Blondel, A. Gajardo, M. Heymans, P. Senellart, P. Van Dooren. A Measure of Similarity between Graph Vertices: Applications to Synonym Extraction and Web Searching. *SIAM Review (2004)*
- □ J. Hayes, C. Gutiérrez. Bipartite Graphs as Intermediate Model for RDF. *ISWC (2004)*
- S. Melnik, H. Garcia-Molina, E. Rahm. Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching. *ICDE (2002)*
- Y. Sure, O. Corcho, J. Euzenat, T. Hughes (eds.). Proceedings of the 3rd International Workshop on Evaluation of Ontology Based Tools (EON 2004). CEUR-WS Publication (2004)

Thanks !

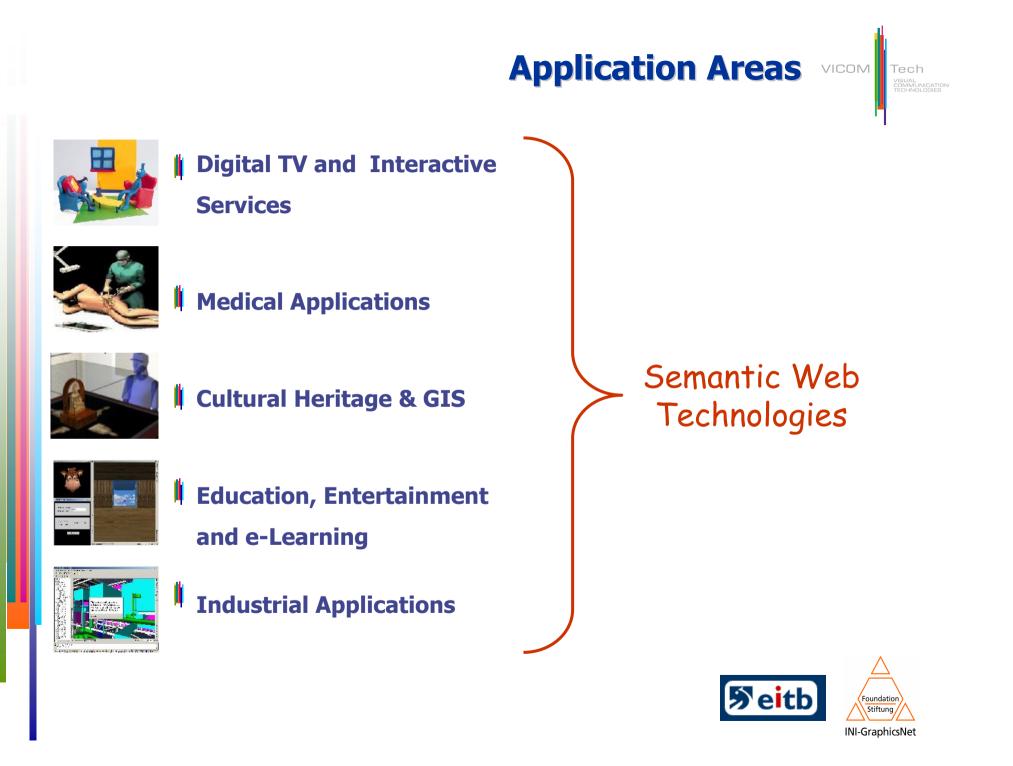
Any Comment and Suggestion is Welcome!

CENTRO DE TECNOLOGÍAS DE INTERACCIÓN VISUAL Y COMUNICACIONES

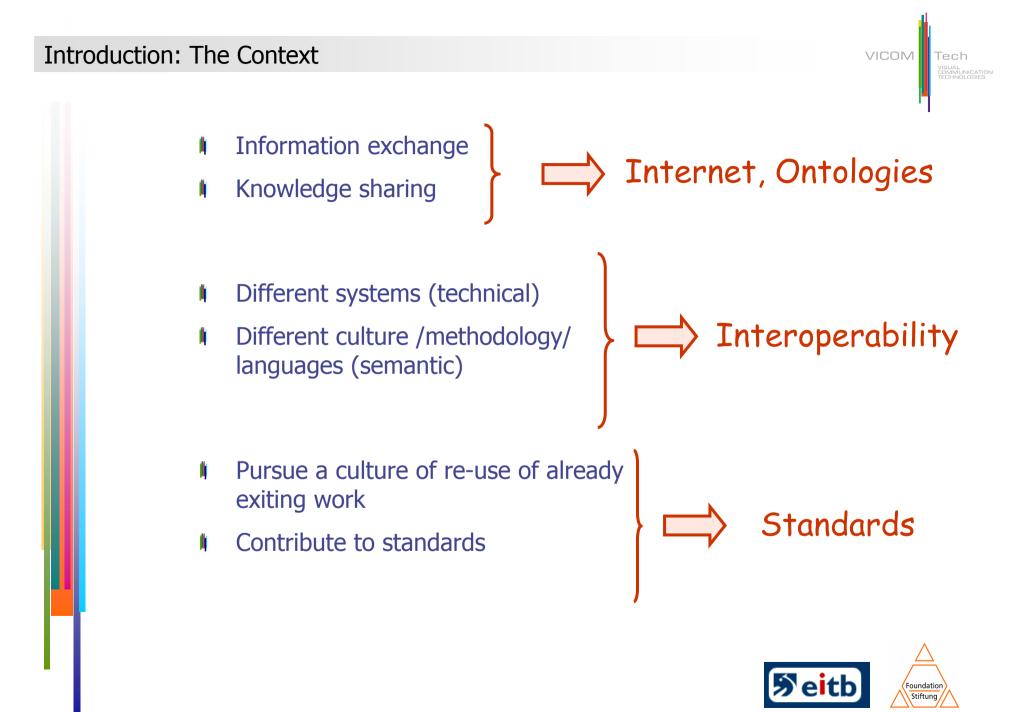
VISUAL INTERACTION AND COMMUNICATIONS TECHNOLOGIES

Carlos Lamsfus. K-CAP 2005

Banff, October 2nd 2005


- A non profit Applied Research Technology Centre in Computer Graphics, Multimedia and Telecommunications.
 - Located in **San Sebastian**, Spain, in the San Sebastian Technology Park.
- Founded by the INI-GraphicsNet and EiTB (April 2001)

- R & D Center, integrated in the Basque Technology Network (Saretek) as Center of Excellence in R&D and Technology Transfer
 - Member of INI-GraphicsNet
- About 35 Researchers (Engineers, Computer Scientists, Students, etc)
- VICOMTech is an ISO 9001:2000 certified institute



Towards Semantic Based Information Exchange and Integration Standards: the art-E-fact ontology as an extension to the CIDOC CRM (ISO/CD 21127) Standard

Carlos Lamsfus, María Teresa Linaza and Tim Smithers

Carlos Lamsfus. K-CAP 2005

Banff, October 2nd 2005

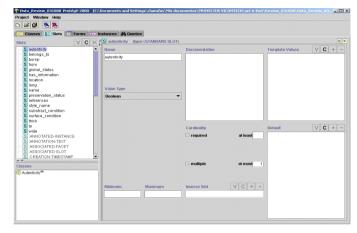
INI-GraphicsNet

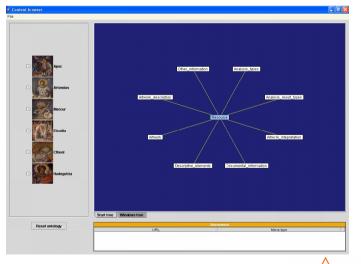
Presentation Overview

VICOM Tech

- Introduction and Objectives
- Previous work
 - The art-E-fact project and ontology
 - The CIDOC CRM ontology
- art-E-fact vs. CIDOC CRM -> Differences
- Alignment of the art-E-fact and CIDOC CRM ontologies
- Conclusions

Create a generic platform for Interactive Storytelling in Mixed Reality that allows artists to create artistic expressions in an original way within a cultural context between the virtual and the physical reality

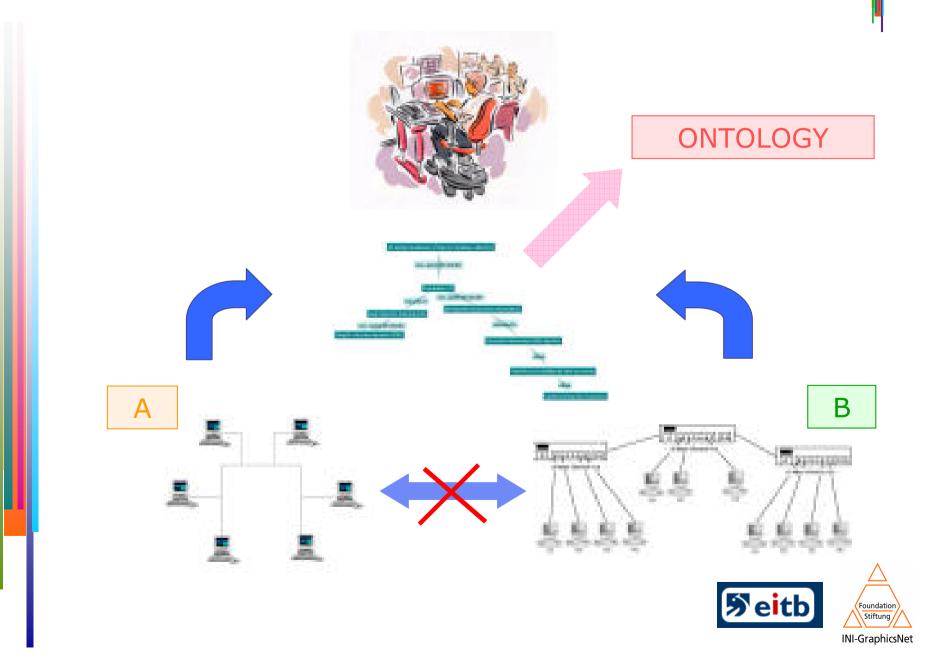

- Develop a generic platform for interactive storytelling
- Facilitate access to a knowledge database of cultural and artistic material
- Develop an Authoring-Tool (from scratch) that allows artists to create interactive stories (content, virtual characters, background and interaction metaphors)
- Access to the content databases


Previous work: the art-E-fact ontology

The art-E-fact ontology:

- For authors to get a general idea of the content
- Reflect relations among concepts that are not shown in the database

- The Content Browser:
 - Efficient and effective access and navigation through the concepts
 - To get to know and discover what there is available
 - Access to the content database



Tech

VICOM

Previous work: the CIDOC CRM(I/II)

VICOM Tech

Previous work: the CIDOC CRM (II/II)

- ICOM Tech
- Serve as common language for domain IT experts and developers
- Support the implementation of automatic data transformation algorithms from local to global structures without loss of meaning
- Exchange and integration of heterogeneous scientific documentation of museum collections:
 - Scientific documentation -> information described by CIDOC CRM as sufficient for academic research
 - Museum collections -> collections, sites, monuments, etc.

Presentation Overview

VICOM Tech

- Introduction and Objectives
- Previous work
 - The art-E-fact project and ontology
 - The CIDOC CRM ontology
- art-E-fact vs. CIDOC CRM -> Differences
- Alignment of the art-E-fact and CIDOC CRM ontologies
- Conclusions

art-E-fact vs. CIDOC CRM -> differences

VICOM Tech

Similarities

Both ontologies reflect a (serious) commitment to the expression of common concepts underlying data structures used by their users

Differences

- The art-E-fact ontology was motivated by the need to describe added-value content for the creation of stories
- The CIDOC CRM ontology focuses on documentation processes among cultural institutions, motivated by the need to share information

art-E-fact vs. CIDOC CRM -> differences

CIDOC CRM

- SCOPE: all the information required for the scientific documentation of cultural heritage collections -> information exchange
- CIDOC CRM focuses on curated knowledge of museums
- The CIDOC CRM is intended to cover contextual information, e.g. historical, geographical and theoretical background

art-E-fact

- SCOPE: the ontology is not devoted to documentation, but to content description and comprehension -> "semantic index"
- art-E-fact focuses on content generation by artists
- The art-E-fact ontology takes into account different levels of knowledge in order to provide rich content to build interactive stories

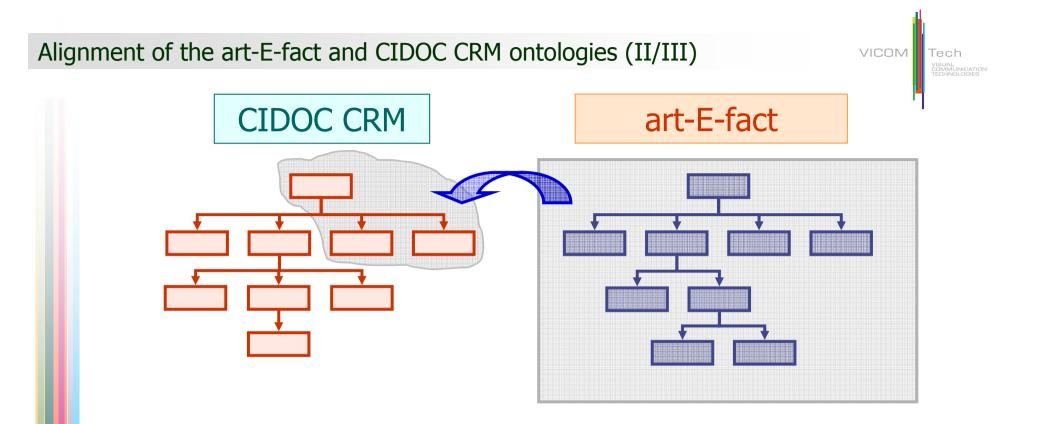
VICOM

Presentation Overview

VICOM Tech

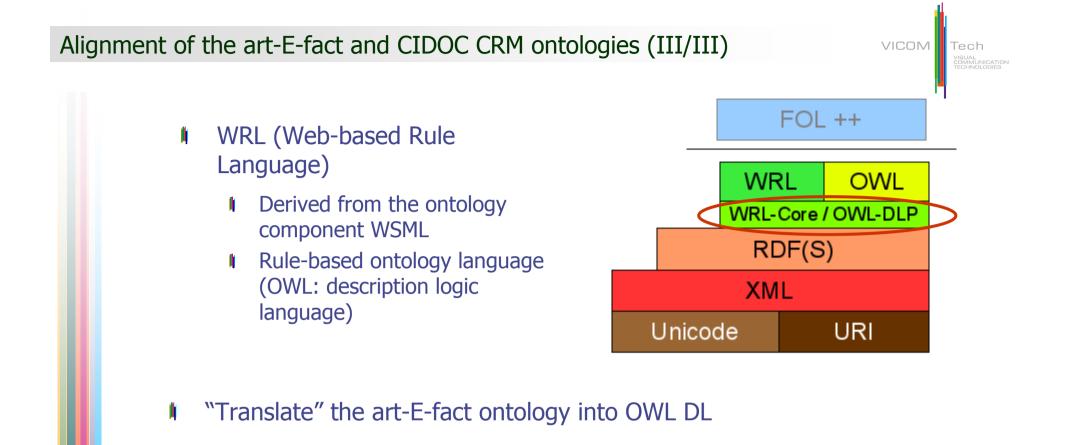
- Introduction and Objectives
- Previous work
 - The art-E-fact project and ontology
 - The CIDOC CRM ontology
- art-E-fact vs. CIDOC CRM -> Differences
- Alignment of the art-E-fact and CIDOC CRM ontologies
- Conclusions

Alignment of the art-E-fact and CIDOC CRM ontologies (I/III)


Merging vs. Alignment (incorporation) of ontologies

Questions:

- Does the art-E-fact ontology need to be a CRM extension?
- What would we like to do with the extended version?
- What do we want to support people doing?
- Alignment: semi-automated rule-based process
 - Tool -> to be selected yet
 - Ontology language: OWL DL
 - Alignment language: RWL (<u>http://www.wsmo.org/wsml/wrl/wrl.html#wsml</u>)



- Understand how the art-E-fact ontology is related to the CRM (knowledge levels)
- Identify CRM's part we want to map to art-E-fact
- Try to find a CRM subgroup and match it (semantically) as identities

Using WRL identify "common" concepts

Presentation Overview

VICOM Tech

- Introduction and Objectives
- Previous work
 - The art-E-fact project and ontology
 - The CIDOC CRM ontology
- art-E-fact vs. CIDOC CRM -> Differences
- Alignment of the art-E-fact and CIDOC CRM ontologies
- Conclusions

Conclusions

- Technology tending to standards -> enable information exchange
- The art-E-fact and CIDOC CRM ontologies
 - Definition, comparison, differences -> conclusions
- Research on semantic-based rule languages
- Contribute in general to the standardization of processes as well as to standards
- Concrete example of the application of the mapping process

CENTRO DE TECNOLOGÍAS DE INTERACCIÓN VISUAL Y COMUNICACIONES

VISUAL INTERACTION AND COMMUNICATIONS TECHNOLOGIES

Carlos Lamsfus. K-CAP 2005

Banff, October 2nd 2005

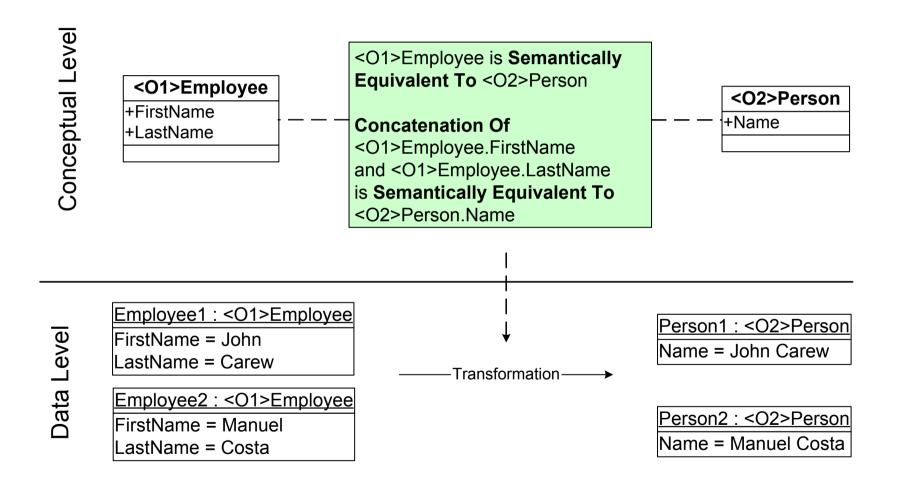
An approach to ontology mapping negotiation

Presentation at K-CAP'05 IntOnt WS Banff, Canada 2005-10-02

Nuno Silva, Paulo Maio, João Rocha

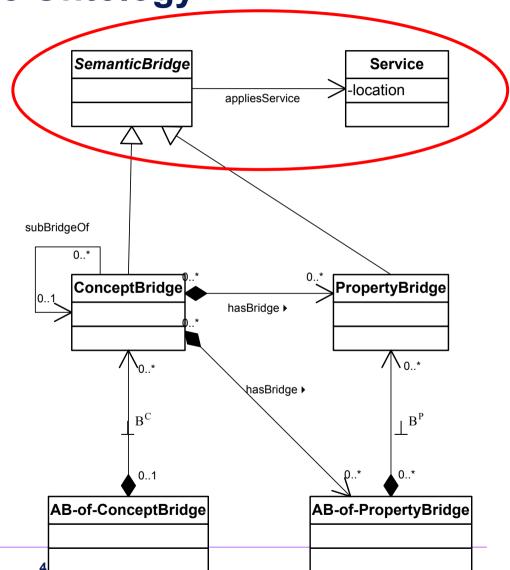
GECAD – Knowledge Engineering and Decision Support Research Group Polytechnic Institute of Porto - Portugal

http://www.gecad.isep.ipp.pt Nuno.Silva@dei.isep.ipp.pt



Agenda

- Ontology mapping fundamentals
- Ontology mapping negotiation introdution
- Hypothesis
- Service-oriented automatic bridging
- Service-oriented negotiation
- Contributions and future work


Ontology Mapping: simple perspective

SBO - Semantic Bridge Ontology

- Taxonomy of bridges:
 - Concept Bridge
 - Property Bridge
 - Alternative Bridge
- Relation between bridges
 - subBridgeOf
 - hasBridge
- An ontology mapping specification is an instantiation of the SBO

Ontology Mapping Negotiation: Context

- Minimal or no research on the topic. None in both:
 - MeaN'2002: Meaning Negotiation WS at AAAI-02
 - MCN'2004: Meaning Coordination & Negotiation WS at ISWC-2004

- Agent and E-commerce research may be useful, but (typically):
 - One provider / Multi-consumers
 - Object of the negotiation: 1 item, as is
 - Value-oriented (\$) auctions

Characterization of the problem

Negotiation

• relaxation of the goals to be achieved by the intervenients in the negotiation, so that both achieve an acceptable contract, and as good as possible

Intervenients

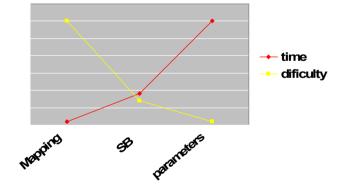
- Cardinality and Type (ontology "owners", mediators, facilitators)
- Characteristics (honesty, bluffing)

• Goals

- Object of the negotiation: mapping, semantic bridge, its parameters
- Value of the object: correctness, relevance (both subjective)
- Domain of the negotiation: (price, warranty, delivery, etc.)

Relaxation mechanisms

- What to relax: domain of the negotiation
- How to measure relaxation efforts


Definitions

Intervenients

- Two ontology owners
- Honest and non-bluffing
- Able to derive a Mapping Document (set of Semantic Bridges)

• Goals

- Object of the negotiation: semantic bridge
- Value of the object: correctness + relevance
- Domain of the negotiation: semantic bridges

Hypothesis

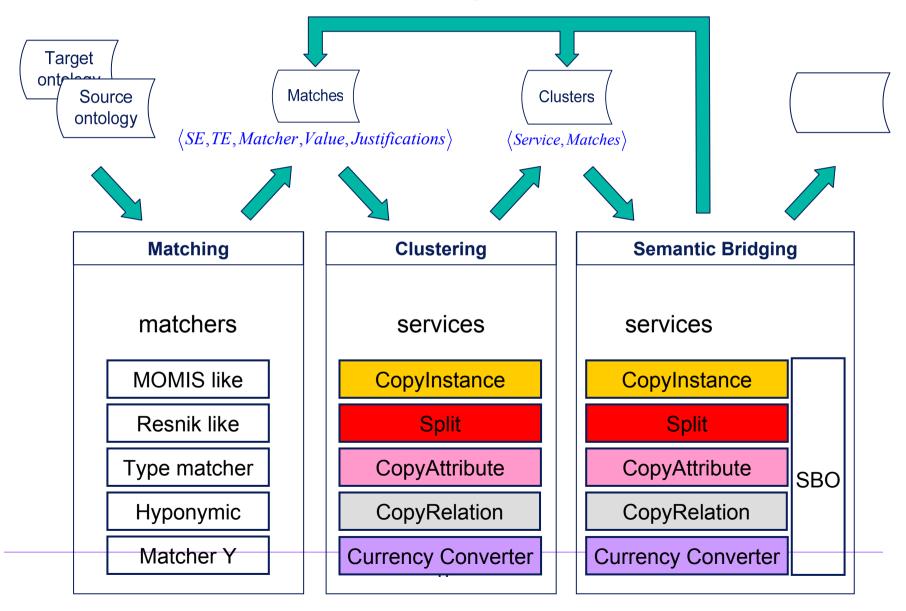
- Goal/Value of the negotiation: utility function $u(p_1, p_2, ..., p_n)$
- Relaxation mechanisms: meta-utility function $U(p_1, p_2, ..., p_n)$

 $p_1, p_2, ..., p_n$?

Matches represent the confidence that specific and specialized algorithms (Matchers) have, concerning the semantic similarity of two entities from two ontologies.

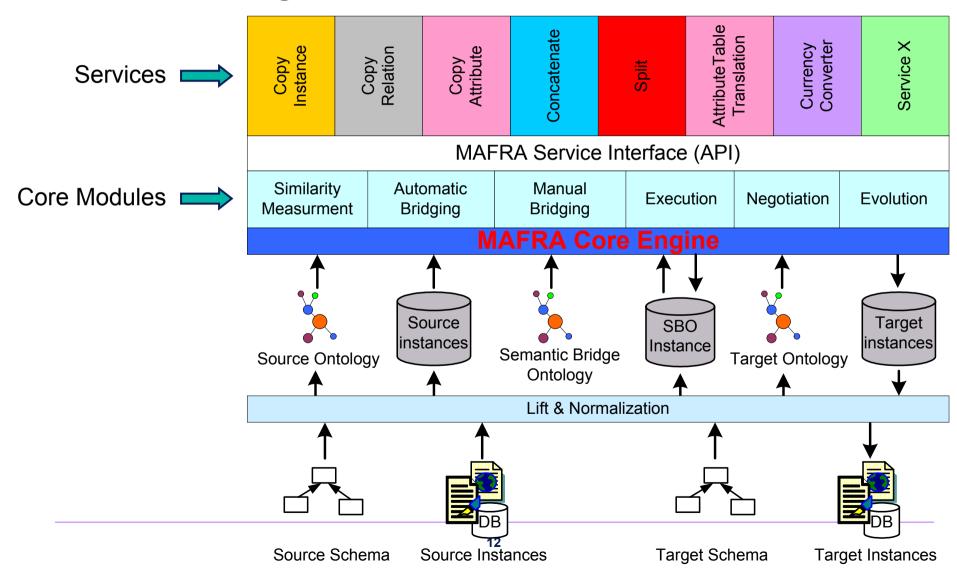
Metaphor

id	Source Entity	Target Entity	Matcher	Value	Justif.	SB		SB		SB		SB	\frown
m11	Individual	Woman	MOMIS-like	0,78	-		\frown	SB SB	\frown		\frown	(SB)	SB
m10	Individual	Man	MOMIS-like	0,78	-	(SB)) (SB)		(SB)	$\left(SB \right)$	SB		SB
m9	Individual	Individual	MOMIS-like	0,78	-	$\backslash \uparrow$	1	$\setminus (SB)$		$\backslash \uparrow$		SB	ОВ
m8	name	surname	Hyponymic	1	-					\backslash			\backslash
m7	name	given_name	Hyponymic	1	-	V		V		V	(J)	V V	V
m6	spouseIn	noMarriages	Resnik-like	0,66	-	, es	, uo	te	Concatenate		rable tion	icy ter	×
m5	name	surname	Resnik-like	0,82	-	Copy Instance	Copy Relation	Copy Attribute	cate	Split	ute nsla	Currency Converter	Service
m4	name	given_name	Resnik-like	0,82	-		° Å	At	Con		AttributeTable Translation	ರೆರಿ	Se
m3	Individual	Woman	Resnik-like	0,86	-		MAFRA Service Interface (API)						
m2	Individual	Man	Resnik-like	0,86	-						(AFI)		
m1	Individual	Individual	Resnik-like	0,95	-	\rightarrow		tomatic idging					


Parameterization

	Service	Considered matches types	t _{match}	u	t _r	Extra requirements
matchers	Convlottones	Resnik-like	0,7		0,6	
	CopyInstance	MOMIS-like	0,7	u _{ci}		
MOMIS like	0.12	Resnik-like	0,5	u _s	0,67	
Resnik like	Split	MOMIS-like	1			
Type matcher	CopyAttribute	Resnik-like	0,8	u _{ca}	0,95	
	Соружиниис	MOMIS-like	0,8			
Hyponymic	Completion	Resnik-like	0,75		0.75	
Matcher Y	CopyRelation	MOMIS-like	0,8	u _{cr}	0,75	
	Commenter Commenter	Resnik-like	0,3 <y<0,5< td=""><td></td><td rowspan="2">0,92</td><td>Source and target</td></y<0,5<>		0,92	Source and target
	Currency Converter	Type matcher	1	u _{cc}		attributes should be of type "currency"

- Combine values from matchers into an overall similarity value (**u**)
- Apply thresholds (\mathbf{t}_r) , determining relevance



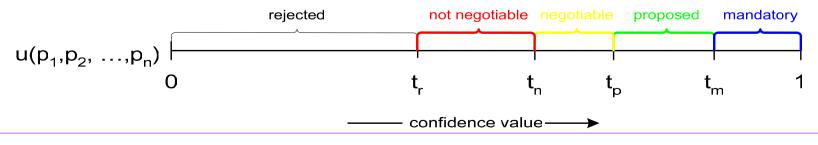
Matchers, Clusters & Bridges

MAFRA System Architecture

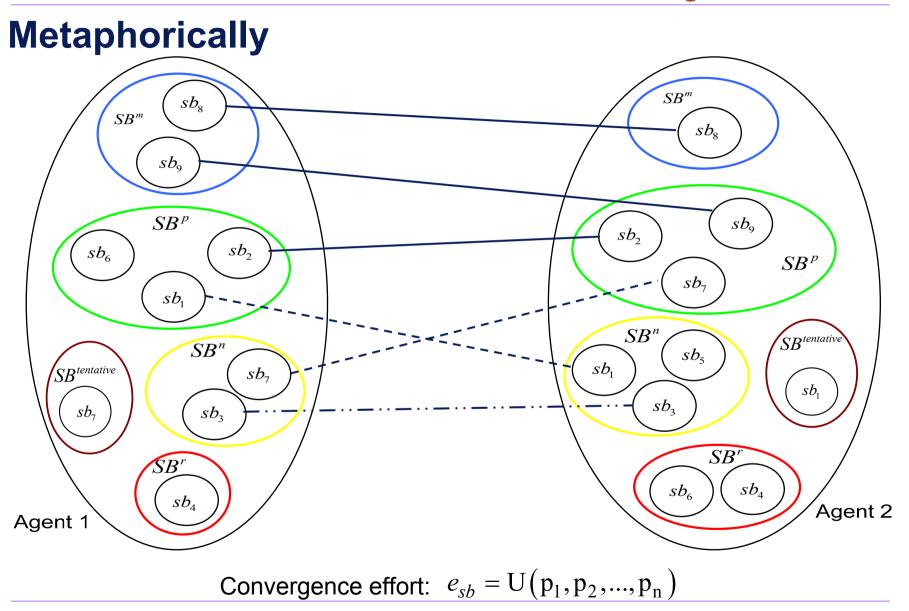
Negotiation approach: basic idea

- Take advantage of the multi-dimensional serviceoriented ontology architecture
- Build common consensus about similarity values proposed by Services

Problem: How to make agents to converge to a common consensus?


Convergence process

- Let agents relax the similarity requirements (thresholds, parameters, etc.)
- Such that, for each agent, the sum of the similarity values associated with the consensually adopted semantic bridges is greater than without the negotiation
- Define variation functions (meta-function) upon the parameters and threshold of the utility function, determining the new value and the convergence effort
- Eventually considering preferences upon the variation of the parameters



Confidence thresholds

Service	Considered matches types	t _{match}	u	t _r	t _n	t _p	t _m	U
CopyInstance	Resnik-like	0,7		0,6	0,65	0,80		T
	MOMIS-like	0,7	u _{ci}				0,95	U _{ci}
Split	Resnik-like	0,5		0,67	0,7	0,80	0.02	T
	MOMIS-like	1	u _s				0,92	U _s
CopyAttribute	Resnik-like	0,8		0,95	0,95	0,95	0,95	TI
	MOMIS-like	0,8	u _{ca}				0,95	U _{ca}
CopyRelation	Resnik-like	0,75		0.55	0.75	0.02	0.04	T
	MOMIS-like	0,8	u _{cr} 0,75	0,75	0,83	0,94	U _{cr}	
Currency Converter	Resnik-like	0,3 <y<0,5< th=""><th></th><th>0.02</th><th>0.02</th><th>0.02</th><th>0.02</th><th>II</th></y<0,5<>		0.02	0.02	0.02	0.02	II
	Type matcher	1	u _{cc} 0,92	0,92	0,92	0,92	U _{cc}	

Global acceptance

$$balance = \sum c_{sb} - \sum e_t$$
$$sb \in SB^p \cup SB^m$$
$$t \in SB^{tentative}$$

- < 0 loss \rightarrow Resulting document mapping is rejected \rightarrow Revise
- >= 0 no loss \rightarrow Resulting document mapping is accepted

Contributions and future work

Contributions:

- Characterization of the ontology mapping negotiation problem
- Negotiation based on the utility and meta-utility functions
- The identification of matches as parameters for these functions
- The service-oriented negotiation process based on the categorization of semantic bridges

Future work

- Configuration and customization of the meta-utility function
- Experiments in "real world" cases

Thanks! Any questions?

Nuno Silva

GECAD – Knowledge Engineering and Decision Support Research Group

Polytechnic Institute of Porto - Portugal

http://www.gecad.isep.ipp.pt

Nuno.Silva@dei.isep.ipp.pt