Introduction to the Ontology Alignment Evaluation 2005

Jérôme Euzenat

Heiner Stuckenschmidt

Mikalai Yatsevich

euzenat@inrialpes.fr

vrije Universiteit

heiner@cs.vu.nl

yatskevi@unitn.it

< 6 >

Outline

- 2 Benchmark suite
- Oirectory real world case
- Anatomy real world case

< 1 →

(*) *) *) *)

Goal

• Improving the performances of the ontology matching field

< ロ > < 同 > < 回 > < 回 > .

- ... through the comparison of algorithms
- ... on various sets of tests:

Created an "Ontology Alignment Evaluation Initiative" for permanence.

Schedule

Preparation June 1st-July 1st; Execution July 1st-September 1st; Evaluation August 15th + September 1st-7th;

▲□ ► < □ ► </p>

ヨート

Rules

- From a set of couple of ontologies (in OWL)...
- ... Use one automatic system...
- ... With the same set of parameters...
- ... To output an alignment (in the ontology alignment format).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• All general purpose resources authorized.

Validation

- Participants provide their systems...
- ... and their parameters;
 - Organizers test this:

▲□ ► < □ ► </p>

∃ >

General introduction Benchmark suite

Benchmark suite Directory real world case Anatomy real world case General conclusion

Participants

Name	System	Benchmarks	Directory	Anatomy	Validated
U. Karlsruhe	FOAM	\checkmark	\checkmark		
U. Montréal/INRIA	OLA	\checkmark	\checkmark		\checkmark
IRST Trento	CtxMatch 2	\checkmark	\checkmark		
U. Southampton	CMS	\checkmark	\checkmark	\checkmark	
Southeast U. Nanjin	Falcon	\checkmark	\checkmark		\checkmark
UC. Dublin	?	\checkmark	\checkmark		
CNR/Pisa	OMAP	\checkmark	\checkmark		

・ロト ・回ト ・モト ・モト

э

General comments

- More participants than last year
- No americans?
- We took into account most of the remarks of last year;
- The time devoted to this experiment (3 month during summer) was too short

・ 同 ト ・ ヨ ト ・ ヨ ト

• The final results are not yet on the web!

Test set

- improving on last year EON test bench (improved by circular references);
- based on a bibliography ontology in OWL-DL in RDF/XML featuring reference to outer ontologies;
- containing 33 named classes, 24 object properties, 40 data properties, 56 named individuals and 20 anonymous individuals;
- reference 1-1 alignments with "=" relation and 1. confidence;
- three group of tests: simple (4), systematic (46), and real-life (4);

< ロ > < 同 > < 三 > < 三 > 、

• systematically altered by combining the transformations on names, comments, instances, classes, properties.

Results (precision and recall)

algo	edna	falcon	foam	ctxmatch	dublin	cms	omap	ola
1xx	0.96	1.00	0.98	0.10	1.00	0.74	0.96	1.00
2xx	0.41	0.90	0.89	0.08	0.94	0.81	0.31	0.80
3xx	0.47	0.93	0.92	0.08	0.67	0.93	0.93	0.50
means	0.45	0.91	0.90	0.08	0.92	0.81	0.35	0.80
1xx	1.00	1.00	0.65	0.34	0.99	0.20	1.00	1.00
2xx	0.56	0.89	0.69	0.23	0.71	0.18	0.68	0.73
3xx	0.82	0.83	0.69	0.22	0.60	0.18	0.65	0.48
means	0.61	0.89	0.69	0.24	0.72	0.18	0.70	0.74

In green, the validated results In red the very good performances.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results (precision/recall profiles)

Jérôme Euzenat, Heiner Stuckenschmidt, Mikalai Yatskevich

Introduction to OAEI 2005

Comments

- Syntactic quality of results improved;
- Global quality of results improved (the tests were more difficult);
- The results of the best system improved (even with wider challenge);
- Last year, il was possible to win with a system mainly accounting on one feature of ontology; this year the winners combined features intelligently;
- We really need some semantically correct evaluation methods;

(日) (同) (三) (三)

• First test with results validated!

Goal

Test ontology matching systems on web directories which can be treated as shallow ontologies:

- Real world matching task composed from parts of Google, Yahoo and Looksmart taxonomies
- Some reference mappings available
- Only true positives: allows to measure recall but not precision

(日) (同) (三) (三)

Results

・ロト・雪・・雪・・雪・ うらの

Comments

- The matching task is hard
 - $\bullet\,$ The best systems found 30% of mappings or have recall about 30%
 - All the systems together found 60% of mappings
- The matching task is discriminant
 - 44% of the mappings found by any of the matching systems was found by only one system

- 4 同 6 4 日 6 4 日 6

Future work

- Extend the dataset in order to add true negatives
- Allows to measure precision
- Apply the similar dataset construction techniques to expressive ontologies (such as in medical ontologies task)
- Opens possibility to have quantitive analysis of results in medical ontologies case

- 4 同 ト 4 ヨ ト 4 ヨ ト

Data set

The GALEN Anatomy model:

- Developed by the University of Manchester
- About 10.000 concepts and 30 relations about human anatomy
- Available as a (Protege) OWL file (pprox 4MB)
- The Foundational Model of Anatomy FMA
 - Developed at University of Washington
 - About 60.000 terms and 50 relations for talking about human anatomy and development

・ロト ・同ト ・ヨト ・ヨト

• Available as database plugin to Protege and as an exported RDF schema files (> 40MB !) further translated in OWL.

Comments

- This has been a challenge for organizers;
- This was a challenge for tools (mostly for OWL managers);
- We are currently not able to clearly evaluate the results
- Beside partial attempts, there is no reference set of mappings for these ontologies;
- Plans: finding a set of core mappings automatically that can help to check results on these mappings.

- 4 同 6 4 日 6 4 日 6

Lesson learned

- More and more tools, and more robust;
- We can measure quality increase;
- It is difficult to find "real world" test sets;
- Real world test sets are difficult to evaluate;
- Validation of results is difficult, but not impossible.

A (10) < A (10) </p>

Future plan

- Need for new real world cases;
- Need for new evaluation metrics;
- Need for more real world alteration of the benchmarks;

(4月) (4日) (4日)

• We would like to accept continuous submissions;

Conclusion

- We will now listen to the participants;
- We will have a general discussion them;
- Thank you all!

http://oaei.inrialpes.fr/2005

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Framework for Ontology Alignment and Mapping

AIFB

<u>Marc Ehrig</u> and York Sure Institute AIFB, University of Karlsruhe Integrating Ontologies Workshop Banff, Canada October 2, 2005

• Alignment Definition

- Given two ontologies O₁ and O₂, aligning one ontology with another means that for each entity (concept C, relation R, or instance I) in ontology O₁, we try to find a corresponding entity, which has the same intended meaning, in ontology O₂.
- $align(e_{1i}) = e_{2j}$

O Use Cases

- Query and Answer Translation
- Ontology Merging
- Ontology Evolution / Versioning
- Data Integration
- Reasoning
- ...

O Similarity Rules

	Feature	Similarity Measure
Concepts	label	String Similarity
	subclassOf	Set Similarity
	instances	Set Similarity
Relations		
Instances		

Different Aspects of Ontology Alignment

- Quality
- Time Constraints
- User Interaction
- Task-based Alignment
- Complex Alignments
- Ontology Merging
- Mapping Maintenance and Evolution
- •

- Labels or identifiers are important and help to align most of the entities.
- The structure helps to identify alignments, if the labels are not expressive.
- A more expressive ontology results in better alignments; an argument in favor of ontologies compared to simple classification structures.
- The generally learnt weights have shown very good results.

- The approach cannot deal with consequently changed labels. Especially translations, synonyms, or other conventions make it difficult to identify alignments.
- The system is bound to OWL-DL or lesser ontologies.
- Problems with the representation format of alignments.

General Comments

- improvement compared to last year
- middle to upper ranking
- valuable results

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam

Framework for Ontology Alignment and Mapping

- Complete
- Random selection
- Closest label
- Change propagation

Similarity Measure

• String similarity

$$sim_{String}(s_1, s_2) = \max(0, \frac{\min(|s_1|, |s_2|) - ed(s_1, s_2)}{\min(|s_1|, |s_2|)})$$

- Object Similarity
- Set similarity

Combination

- How are the individual similarity measures combined?
- Linearly
- Weighted

$$sim(e, f) = \sum_{k} w_{k} sim_{k}(e, f)$$

• Special Function

- From similarities to alignments
- Threshold
- $align(e_{1j}) = e_{2j} \leftarrow sim(e_{1j}, e_{2j}) > t$

#	Name	Prec.	Rec.	F-measure	Time
101	Reference alignment	1.0	1.0	1.0	2.96
102	Irrelevant ontology	-	-	-	207.14
103	Language generalization	1.0	1.0	1.0	180.95
104	Language restriction	1.0	1.0	1.0	177.63
201	No names	0.90	0.65	0.75	175.99
202	No names, no comments	0.85	0.57	0.68	176.59
203	No comments	1.0	1.0	1.0	174.21
204	Naming conventions	0.96	0.93	0.94	185.09
205	Synonyms	0.80	0.67	0.73	174.46
206	Translation	0.93	0.76	0.84	172.15
207		0.95	0.78	0.86	167.89
208		0.96	0.87	0.92	164.20
209		0.81	0.57	0.67	168.63
210		0.92	0.67	0.77	164.31
221	No specialization	1.0	1.0	1.0	172.92
222	Flattened hierarchy	1.0	1.0	1.0	127.63
223	Expanded hierarchy	0.99	1.0	0.99	142.70
224	No instance	1.0	0.99	0.99	42.09
225	No restrictions Integrating Ontologies	- ¹ thria Sure	- FOAM	1.0	171.13 17
228	No properties	1.0	1.0	1.0	112.60

CROSI Mapping System

Advanced Knowledge Technologies IRC, University of Southampton, UK

Hewlett Packard Laboratories, Bristol, UK

Bo Hu, Yannis Kalfoglou, Dave Reynolds, Nigel Shadbolt {bh, y.kalfoglou, <u>nrs}@ecs.soton.ac.uk</u>, dave.reynolds@hp.com

Structure

- CROSI project
- Semantic Intensity Spectrum
- CMS (<u>CROSI Mapping System</u>)
- OAEI'05 Results
- Issues

CROSI Project

- Capturing, Representing, and Operationalising
 Semantic Integration
- One year project (Oct'04—Oct'05) funded by Hewlett Packard Labs @Bristol, UK
- Deliverables
 - a survey of the state-of-the-art of semantic integration techniques and systems
 - a method for classifying semantic integration technology
 - a principled architecture for deploying ontology mapping systems
 - an ontology mapping system (CMS)
- more on: http://www.aktors.org/crosi/

Semantic Intensity Spectrum

 A classification technique for *both* database schema matching and ontology alignment approaches

Semantic Intensity Spectrum

Semantic Intensity Spectrum

- A classification technique for both database schema matching and ontology alignment approaches
- A designer's aid for navigating through different mapping approaches with emphasis on the use of semantics

CMS: design commitments

- Avoid *reinventing the wheel*
 - Use existing packages to enhance internal matchers
 - Use existing mapping/alignment systems as external matchers
- Semantically enriched matchers based on the definition of concepts
 - Propagate similarity along concept hierarchies
 - Refine concept similarity by taking into account the names, domains and ranges of declared properties
 - Compute similarity using WordNet hierarchies

CMS: deployment choices

OAEI'05 Results benchmark cases

- When appropriate, we combined four internal matchers:
 - *CanoName:* concept and property names
 - *StructurePlus*: concept definitions
 - *WNDisSim:* WordNet based semantic distance
 - HierarchyDisSim: concept hierarchy-based semantic distance
- Only results wrt. concepts are saved

-OAEI'05 Results

benchmark cases cnt'd.

- Weaknesses:
 - Does not perform well when both concept and property names are replaced by random strings
 - should random strings be consider as a valid mapping?
 - WordNet synsets need context information otherwise unrealistic mappings are proposed
 - e.g. MotionPictures ⇔ LectureNotes

Strengths:

- Penalisation of concept similarities is based on:
 - the subtle differences between property domains and ranges
 - their respective locations in the concept hierarchies

•OAEI'05 Results web directories case

- Had to deal with only concept names and single-line hierarchies
 - We found some cyclic definitions
- Canonical name and hierarchical distance matchers were used
- CMS performed well in the majority cases

•OAEI'05 Results medical ontologies case

- Size was the major obstacle for parsing and processing the FMA ontology
 - Naming conventions
 - Different focus of FMA and OpenGalen
- 100% mapping is identified between a few concepts
- More mappings can be identified when aligning concepts against individuals is allowed
 - should a broader sense of mapping be adopted?

Issues

- Difficult to validate results of real-life cases
- Numeric similarity scoring is <u>confusing</u> in the context of ontology mapping
- A pragmatic use-case to make the most out of ontology mapping/alignment technology

Falcon-AO: Aligning Ontologies with Falcon

NingSheng Jian, Wei Hu, Gong Cheng, Yuzhong Qu

Department of Computer Science and Engineering Southeast University, P. R. China

Outline

What is Falcon-AO
How does Falcon-AO work
Results
Conclusion
Outlook

What is Falcon

Finding, Aligning, Learning ontologies, and ultimately for Capturing knowledge by an ONtology-driven approach.

A suit of methods and tools for the Semantic Web applications

<out DatatypeProperty rdf:about="&foaf;f;fstName" />

<owl:DatatypeProperty rdf:ID="lastNap

What is Falcon-AO

Aligning Ontologies with Falcon **An integration of two matchers** LMO – Linguistic Matching for Ontologies **CANO – Graph Matching for Ontologies** dfs:domain rdf:resource="&rdf;Lis ow1:ObjectProperty> rdfs rang rdfs domain rdfs subClassOf owl:ObjectProperty rdf:about="&rdf;rest"> <rdfs:domain rdf:resource="&rdf;List" /> <rdfs:range rdf:resource="&rdf;List" /> </owl:ObjectProperty> <owl:DatatypeProperty rdf:about="&dc;creator" /> <owl:DatatypeProperty rdf:about="&dc;contributor"</pre> <owl:DatatypeProperty rdf:about="&dc;description"</pre> 1/> <owl:DatatypeProperty rdf:about="&dc;date" /> <!-- foaf extensions --> <owl:Class rdf:about="&foaf;Person" /> wl:Class rdf:about="&foaf;Organization" ex1:Graduate ex1 Scholastics ex1 Superviso ex1:PhD Candid ex1.supervise

LMO – Linguistic Matching for Ontologies

GMO – Graph Matching for Ontologies

Bipartite Graph Model

Similarity Accumulation

6

Architecture of Falcon-AO

Results

Tast Casas	Average	Average	Average	Average
Test Cases	Precision	Recall	F-Measure	Run Time
#101 - #104	1.00	1.00	1.00	5 s
#201 - #210	0.96	0.95	0.95	63s
#221 - #247	0.99	1.00	0.99	4 s
#248 - #266	0.71	0.60	0.63	60s
#301 - #304	0.93	0.81	0.86	20s

Low

High

Linguistic Comparability

Conclusion

Both linguistic and structural
 Quickly with high linguistic comparability
 External mapping as input
 No lexical database

Outlook

Very large ontologies
Lexical database
Many-to-many mapping
Measurement of comparability

OLA in the OAEI 2005

Jérôme Euzenat² & Philippe Guégan¹ & Petko Valtchev¹

¹Université de Montréal Montréal (Qc), Canada Petko.Valtchev@umontreal.ca

²INRIA Rhône-Alpes Monbonnot, France Jerome.Euzenat@inrialpes.fr

WOI 2005, October 2nd, Banff

Alignment: Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

Alignment: Goal

- (同) - (目) - (目)

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

Outline

2 The system

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

æ

3

/⊒ > < ∃ >

Ola/VisOn: Objectives

Collaborative project U. of Montreal/INRIA, on top of OWL API and Align API featuring:

- **parsing** and **visualization** of OWL-Lite and OWL-DL ontologies,
- computation of similarities between entities from two ontologies,
- extraction of alignments from a pair of ontologies,
- manual construction of alignments on two ontologies,
- automated completion of an existing (partial) alignment,

/⊒ > < ∃ >

- visualization of alignments,
- comparison of alignments.

Principles of the alignment in OLA

All-encompassing comparison. All the available knowledge taken into account when aligning (neighborhood).

Highest automation level. Although (semi-)manual, the could benefit from automated "draft" alignment generation.

Category-dependent comparison. Entities divided into categories: Only same-category entity pairs compared. Similarity functions tailored acording to the category.

Comparability of similarity results. Useful properties of the similarity functions:

- normalization,
- positiveness,
- maximalness, etc.

The process

- Parse and transform: ontologies mapped into OL-Graphs, labeled digraph structures where semantically related entities are directly (physically) connected,
- Compare: similarity for all same-category *cross-ontology* entity pairs extracted,
- **Rank and align**: entity pairs ranked category-wise and best candidates made to alignment cells.

OL-Graph: Structure

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

OL-Graph: Comparing nodes

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005
OL-Graph: Comparing nodes

э

э

- **→** → **→**

Similarity model: Structure

Similarity factors for a category *X* from the OL-Graph:

- similarities of identifying or describing terms,
- similarities of the **neighbor node** pairs (same category, cross-graph), related by the **same relationship**,
- similarities of further category-spécific local features,

Similarity model: Generic function

Similarity function = weighted linear combination of collection similarities.

For a category X and its set of relationships $\mathcal{N}(X)$, the similarity measure $Sim_X : X^2 \to [0, 1]$ is:

Definition

$$Sim_X(x, x') = \sum_{\mathcal{F} \in \mathcal{N}(X)} \pi_{\mathcal{F}}^X MSim_Y(\mathcal{F}(x), \mathcal{F}(x'))$$

where weights $\pi_{\mathcal{F}}^{X}$ sum to a unit:

$$\sum_{\mathcal{F}\in\mathcal{N}(X)}\pi_{\mathcal{F}}^{X}=1.$$

Similarity model: Concrete functions

Similarity factors for all node categories [2]:

Funct.	Node	Factor	Measure
Sim _O	$o \in O$	$\lambda(o)$	simL
		$a\inA$, $(o,a)\in\mathcal{A}$	MSim _A
Sim _A	$a \in A$	$r\in R$, $(a,r)\in \mathcal{R}$	Sim _R
		$o \in O$, $(a, o) \in \mathcal{U}$	MSim _O
		$v \in V$, $(a, v) \in \mathcal{U}$	MSim _V
Sim _V	$v \in V$	value literal	type dependent
Sim _C	$c \in C$	$\lambda(c)$	simL
		$oldsymbol{p}\in P$, $(oldsymbol{c},oldsymbol{p})\in\mathcal{A}$	MSim _P
		$c'\in {\sf C}$, $(c,c')\in {\cal S}$	MSim _C
sim _D	$d \in D$	$\lambda(r)$	XML-Schema
Sim _R	$r \in R$	$\lambda(r)$	simL
		$c \in \mathcal{C}$, $(r, \texttt{domain}, c) \in \mathcal{R}$	MSim _C
		$c \in \mathcal{C}$, $(r, \mathtt{range}, c) \in \mathcal{R}$	MSim _C
		$d \in D$, $(r, \texttt{range}, d) \in \mathcal{R}$	Sim _D
		$r' \in R$, $(r,r') \in \mathcal{S}$	MSim _R
Sim _P	$p \in P$	$r \in R$, $(p, r') \in S$	Sim _R
		$c \in \mathcal{C}$, $(p, \texttt{all}, c) \in \mathcal{R}$	MSim _C
		$n \in \{0,1,\infty\}$, $(p, \mathtt{card}, n) \in \mathcal{R}$	→ equality => < => =

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

Similarity: Computation

- Circularity = fixed-point computation (SoE) [1],
- Non-linear: multiple choices unforseeable beforehand,
- However a solution always exists process converges [3],
- Computed by an iterative approximation process:

Step 0 initialize similarity by text comparison:

- string-based or
- lexical (WordNet).

Step n+1 re-compute similarity from Step n values.

Stop value increase drops below a *threshold*.

Adaptation: Weight computation

- a real headache: weights a priori fixed for entire benchmarks,
- compare entities on actual description space (EON):

Definition

$$Sim_X^+(x,x') = rac{Sim_X(x,x')}{\sum_{\mathcal{F}\in\mathcal{N}^+(x,x')}\pi_{\mathcal{F}}^X}$$

where $\mathcal{N}^+(x, x')$ is the set of all relationships \mathcal{F} s.t. $\mathcal{F}(x) \cup \mathcal{F}(x') \neq \emptyset$.

Adaptation: Weight computation (count'ed)

- WordNet similarity made simpler and more purposeful,
- adapt weights to refect the "importance" of a factor within the ontologies:
 - *intuition*: the bigger the number of links, the higher the respective weight,
 - $\pi_{\mathcal{F}}^{X}$ follows the average number of \mathcal{F} links per X entity:

Definition

$$\pi_{\mathcal{F}}^{\mathsf{X}} = \frac{\sum_{x \in \mathsf{X}(\mathcal{O}_1 \cup \mathcal{O}_2)} |\mathcal{F}(x)|}{|\mathsf{X}(\mathcal{O}_1 \cup \mathcal{O}_2)|}$$

OAEI Results

Test group	Prec.	Rec.
1XX	1.00	1.00
2XX	0.80	0.73
3XX	0.50	0.48
H-means	0.80	0.74

æ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3XX definitely require further reflection.

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

Lessons learned

- Significant improvement w.r.t. EON: more than 30% precision gain
- Well on the second test category
- But: "real-world" ontololgies way too hard
- Where to look for **further** improvement:
 - (light weight) inference to complete the entity descriptions,
 - category borders could be made similarity-permeable.

Questions?

http://www.iro.umontreal.ca/~owlola/OAEI.html

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Jérôme Euzenat & Philippe Guégan & Petko Valtchev OLA in the OAEI 2005

References

Gilles Bisson.

Learning in FOL with similarity measure.

In Proc. 10th American Association for Artificial Intelligence conference, San-Jose (CA US), pages 82–87, 1992.

Jérôme Euzenat and Petko Valtchev.
Similarity-based ontology alignment in OWL-lite.
In Proc. 15th ECAI, pages 333–337, Valencia (ES), 2004.

Petko Valtchev.

Construction automatique de taxonomies pour l'aide à la représentation de connaissances par objets. Thèse d'informatique, Université Grenoble 1, 1999.