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Outline

1. Tell the name for description of concepts and relations between them.

2. Concept graphs and syntactical relations.

3. Syntactical ambiguity of statements in the first-order logic.

4. The decomposability problem.

5. How classical results can be adopted in a modern field of research.
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A quest for a constructive formulation

Ontology

Declarative KB

Database Schema
?

Deductive DB

Logic program

Terminological Database
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An Example

∀x(Professor(x) ∨ Student(x) −→ Person(x))

∀x(Person(x) −→ Professor(x) ∨ Student(x))

∀x∀y(Supervises(x, y) −→ Professor(x) ∧ Student(x))

∀x∃y(Professor(x) −→ Name(y, x))

∀x∀y(Works− on(x, y) −→ Student(x) ∧ Project(y))

∀x∃y(Project(x) −→ Duration(y, x))

...
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What syntactical ambiguity can be

∀x∀y∃z(¬Person(x) ∨ Professor(x) ∨ Student(x) ∧ ¬Project(y) ∨Duration(z, y))

∀x∀z∃y(¬Professor(x) ∨Name(y, x) ∧ ToBe(z) ∨ ¬ToBe(z))

...
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The Decomposability problem

Having a set of FOL statements, determine, whether it can be represented as a union of
two (or more) sets of statements with non-intersecting signatures.

Definition 1 Consider a signature Σ and a theory T in this signature.
T is called decomposable, if the signature can be represented as a disjunctive union
Σ = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅, such that there is a system of axioms S = S1 ∪ S2, in which
sentences from Si, i = 1,2 contain symbols only from Σi.
We denote a decomposition of theory as T = S1 ⊗ S2, and decomposition of signature as
Σ = Σ1

∐
Σ2.

Problem 1 Consider a theory T in a signature Σ, defined by some set of axioms Φ in
the signature Σ. How to determine, having the set Φ, whether T is decomposable?

Problem 2 Consider a finitely axiomatizable theory T in a signature Σ, defined by some
set of axioms Φ in the signature Σ. How to determine, having the set Φ, whether T is
decomposable?

Reformulation Given an alphabet Σ, a set of expressions TΣ and a set of [equivalent]
transformations on them, infer, whether TΣ is decomposable.
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Applications

1. Knowledge modularization, identification of independent parts of knowl-

edge.

2. Reasoning over large knowledge bases, ontologies.

3. Distributed execution of logical operations on KBs, e.g., consistency

cheking.

4. Automatic theorem proving.

5. Program decomposition.
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From classical logic to modern results

Craig’s interpolation theorem Let ϕ and ψ be sentences for which ϕ 
 ψ.
Then, there is a sentence θ, such that:

1. ϕ 
 θ and θ 
 ψ

2. each symbol in θ is common for ϕ and ψ.

Basing on this classical theorem, we have proven the following:

if a theory is decomposable, then

- the corresponding signature decomposition is unique;

- the theory decomposition is unique up to equality formulas.

Other results:

1. Main steps to reduce a theory to such form that uniquely defines this decomposition;
also - the syntactically unambiguous form.

2. Finitely axiomatizable theory: the decomposability problem is reduced to minimization
of a weight of system of axioms.

3. The decomposition property of theories is stable with respect to simplification pro-
cedures, such as elimination of functional symbols and skolemization.
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Main steps to decomposition

Remark 1 If a theory T in a signature Σ can be defined by a system of axioms, which
uses only a part of signature symbols Σ′ ⊂ Σ, then this theory is decomposable. The
decomposition components in this case are: a theory with the signature Σ′ and theories
with signatures from Σ\Σ′ defined by sets of tautological sentences.

Definition 2 Consider a signature Σ and a theory T in this signature.
We call T reducible, if there exists a subset Σ′ ⊂ Σ of the signature Σ and a system of
axioms S for T , which contains symbols only from Σ′. Thus, T is reduced to the theory
T ′ in the lesser signature Σ′.
If any system of axioms of T contains all signature symbols of Σ, then T is irreducible.
Let us call valid those symbols of Σ that can not be eliminated from any system of
axioms of T .

Proposition 1 Consider a signature extension Σ′ ⊆ Σ and a theory P in Σ′. Take a
sentence ϕ of the signature Σ.
If ϕ follows from P, then there exists a sentence θ ∈ P, such that:

- θ includes only those symbols of Σ′, that are present in ϕ;

- ϕ follows from θ : P 
 θ, θ 
 ϕ.

Proposition 2 Let T be a theory in a signature Σ. Consider a set of valid symbols Σ′ of
the signature Σ: Σ′ ⊂ Σ. Then T can be defined by a system of axioms in the signature
Σ′. Besides, such a system of axioms defines an irredicible theory.
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Main steps to decomposition

Proposition 3 Consider a signature decomposition Σ = Σ1
∐

Σ2 and theories P,Q with
the signatures Σ1, Σ2 respectively. Consider a sentence ϕ in the signature Σ.
If ϕ follows from the union of the theories P, Q 
 ϕ, then there exist sentences θ ∈ P
and φ ∈ Q, such that P 
 θ, Q 
 φ and θ, φ 
 ϕ. Besides, θ includes only those symbols of
Σ1 that are present in ϕ. Correspondingly, φ contains only those symbols of Σ2 that are
present in ϕ.

Definition 3 Consider a theory T and a sentence ϕ ∈T .
ϕ is decomposable in the theory T , if there exist sentences θ ∈T , ψ ∈T , such that θ, ψ
contain symbols only from ϕ and do not have common signature symbols, neither of them
is an equality formula, and θ, ψ 
 ϕ. We call θ and ψ the decomposition components
for the sentence ϕ.
If there are no such θ and ψ, then ϕ is called non-decomposable in the theory T .

Proposition 4 Every theory T has a system of axioms that consists of irreducible non-
decomposable sentences.

The main auxiliary result:

Lemma 1 For any non-trivial decomposition T =S1⊗S2 in a product of theories with
signatures Σ = Σ1

∐
Σ2 (Σ1 �= ∅ �= Σ2), every non-decomposable sentence ϕ ∈ T that

contains signature symbols, follows only from 〈S1,T #〉 or only from 〈S2,T #〉.

If, additionally, ϕ is irreducible, then it is contained either in the theory 〈S1,T #〉 of the
signature Σ1, or in the theory 〈S2,T #〉 of Σ2. In particular, it contains symbols only from
Σ1 or only from Σ2.
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How minimization can help

For each formula ψ in a signature Σ it is possible to consider the set of symbols supp(ψ)
used in this formula. Denote the number of symbols by np(ψ) = #(supp(ψ)).

Let us define a weight of a formula ψ as an integer

w(ψ) = 3np(ψ) = 3#(supp(ψ)).

Remark 2 The number 3 is chosen for the inequality 3n+m > 3n + 3m to hold for any
integers n, m (in particular, for the total weight of decomposition fragments of a formula
to be less, than the weight of the formula itself).

Definition 4 Let us call the sum of the weights of axioms of a system Ψ

w(Ψ) =
∑

ψ∈Ψ

w(ψ)

as the weight of a system Ψ.
Let us call a system Ψ of axioms minimal, if it has a minimal weight.

As the weights are represented by integers, it is always possible to choose a system Ψ
of axioms of a minimal weight (from known systems of axioms). We will further assume
that the system Ψ has a minimal weight. The following proposition explains, how such a
system can be used in solving the decomposability problem.

Proposition 5 Let Ψ be a minimal system of axioms for a theory T . Then it consists of
non-decomposable irreducible sentences of T .
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Perspectives

We have:

1. a (non-constructive) decomposability criterion;

2. uniqueness of decomposition, which justifies search for an algorithm;

3. the minimization task for systems of axioms as a reduction of the decomposability
problem;

4. elimination of functional symbols and skolemization do not disturb decomposition
components.

What next:

1. decidability issues;

2. decomposition algos for concrete cases;

3. expand the framework onto non-classical logics and relative decomposability (when
some common symbols between components are allowed).
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Thank you very much for attention
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