SEMANTIC WEB BASICS IN LOGICAL CONSIDERATION

Denis Ponomaryov

ponom@iis.nsk.su

Institute of Informatics Systems, Novosibirsk, Russia

- 1. Tell the name for *description of concepts and relations between them*.
- 2. Concept graphs and syntactical relations.
- 3. Syntactical ambiguity of statements in the first-order logic.
- 4. The decomposability problem.
- 5. How classical results can be adopted in a modern field of research.

Database Schema

Deductive DB

Declarative KB

?

Ontology

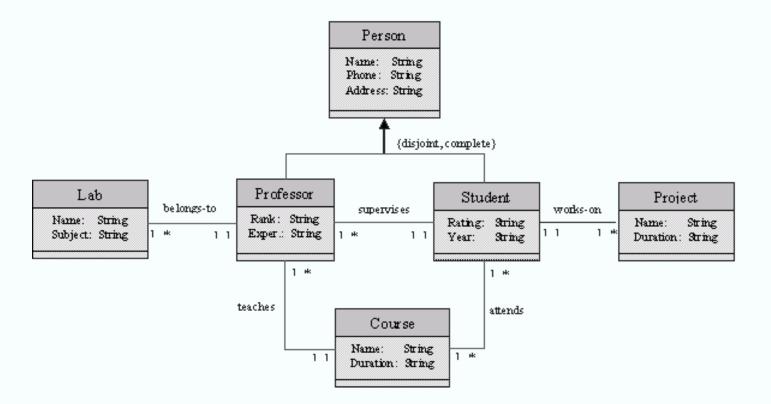
Terminological Database

Logic program

An Example

IIS SB RAS

. . .

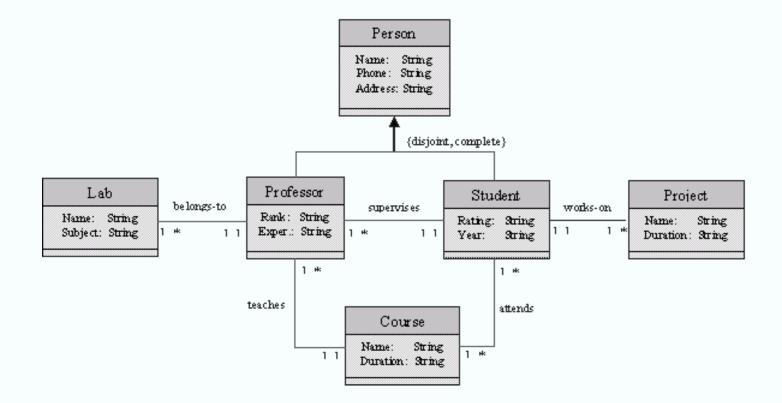


$$\begin{aligned} \forall x (Professor(x) \lor Student(x) \longrightarrow Person(x)) \\ \forall x (Person(x) \longrightarrow Professor(x) \lor Student(x)) \\ \forall x \forall y (Supervises(x, y) \longrightarrow Professor(x) \land Student(x)) \\ \forall x \exists y (Professor(x) \longrightarrow Name(y, x)) \\ \forall x \forall y (Works - on(x, y) \longrightarrow Student(x) \land Project(y)) \\ \forall x \exists y (Project(x) \longrightarrow Duration(y, x)) \end{aligned}$$

What syntactical ambiguity can be

IIS SB RAS

. . .



 $\forall x \forall y \exists z (\neg Person(x) \lor Professor(x) \lor Student(x) \land \neg Project(y) \lor Duration(z, y))$ $\forall x \forall z \exists y (\neg Professor(x) \lor Name(y, x) \land ToBe(z) \lor \neg ToBe(z))$

Having a set of FOL statements, determine, whether it can be represented as a union of two (or more) sets of statements with non-intersecting signatures.

Definition 1 Consider a signature Σ and a theory T in this signature. T is called **decomposable**, if the signature can be represented as a disjunctive union $\Sigma = \Sigma_1 \cup \Sigma_2, \ \Sigma_1 \cap \Sigma_2 = \emptyset$, such that there is a system of axioms $S = S_1 \cup S_2$, in which sentences from S_i , i = 1, 2 contain symbols only from Σ_i . We denote a decomposition of theory as $T = S_1 \otimes S_2$, and decomposition of signature as $\Sigma = \Sigma_1 \coprod \Sigma_2$.

Problem 1 Consider a theory T in a signature Σ , defined by some set of axioms Φ in the signature Σ . How to determine, having the set Φ , whether T is decomposable?

Problem 2 Consider a finitely axiomatizable theory T in a signature Σ , defined by some set of axioms Φ in the signature Σ . How to determine, having the set Φ , whether T is decomposable?

Reformulation Given an alphabet Σ , a set of expressions T_{Σ} and a set of [equivalent] transformations on them, infer, whether T_{Σ} is decomposable.

- 1. Knowledge modularization, identification of independent parts of knowledge.
- 2. Reasoning over large knowledge bases, ontologies.
- 3. Distributed execution of logical operations on KBs, e.g., consistency cheking.
- 4. Automatic theorem proving.
- 5. Program decomposition.

Craig's interpolation theorem Let φ and ψ be sentences for which $\varphi \vdash \psi$. Then, there is a sentence θ , such that:

- 1. $\varphi \vdash \theta$ and $\theta \vdash \psi$
- 2. each symbol in θ is common for φ and ψ .

Basing on this classical theorem, we have proven the following:

if a theory is decomposable, then

- the corresponding signature decomposition is unique;
- the theory decomposition is unique up to equality formulas.

Other results:

- 1. Main steps to reduce a theory to such *form that uniquely defines this decomposition*; also the syntactically unambiguous form.
- 2. Finitely axiomatizable theory: the decomposability problem is reduced to *minimization* of a weight of system of axioms.
- 3. The decomposition property of theories is stable with respect to simplification procedures, such as *elimination of functional symbols* and *skolemization*.

Remark 1 If a theory T in a signature Σ can be defined by a system of axioms, which uses only a part of signature symbols $\Sigma' \subset \Sigma$, then this theory is decomposable. The decomposition components in this case are: a theory with the signature Σ' and theories with signatures from $\Sigma \setminus \Sigma'$ defined by sets of tautological sentences.

Definition 2 Consider a signature Σ and a theory T in this signature.

We call \mathcal{T} reducible, if there exists a subset $\Sigma' \subset \Sigma$ of the signature Σ and a system of axioms S for \mathcal{T} , which contains symbols only from Σ' . Thus, \mathcal{T} is reduced to the theory \mathcal{T}' in the lesser signature Σ' .

If any system of axioms of T contains all signature symbols of Σ , then T is **irreducible**. Let us call **valid** those symbols of Σ that can not be eliminated from any system of axioms of T.

Proposition 1 Consider a signature extension $\Sigma' \subseteq \Sigma$ and a theory \mathcal{P} in Σ' . Take a sentence φ of the signature Σ .

If φ follows from \mathcal{P} , then there exists a sentence $\theta \in \mathcal{P}$, such that:

- θ includes only those symbols of Σ' , that are present in φ ;
- φ follows from θ : $\mathcal{P} \vdash \theta$, $\theta \vdash \varphi$.

Proposition 2 Let \mathcal{T} be a theory in a signature Σ . Consider a set of valid symbols Σ' of the signature Σ : $\Sigma' \subset \Sigma$. Then \mathcal{T} can be defined by a system of axioms in the signature Σ' . Besides, such a system of axioms defines an irredicible theory.

Proposition 3 Consider a signature decomposition $\Sigma = \Sigma_1 \coprod \Sigma_2$ and theories \mathcal{P}, \mathcal{Q} with the signatures Σ_1 , Σ_2 respectively. Consider a sentence φ in the signature Σ . If φ follows from the union of the theories $\mathcal{P}, \mathcal{Q} \vdash \varphi$, then there **exist sentences** $\theta \in \mathcal{P}$ and $\phi \in \mathcal{Q}$, such that $\mathcal{P} \vdash \theta$, $\mathcal{Q} \vdash \phi$ and $\theta, \phi \vdash \varphi$. Besides, θ includes only those symbols of Σ_1 that are present in φ . Correspondingly, ϕ contains only those symbols of Σ_2 that are present in φ .

Definition 3 Consider a theory \mathcal{T} and a sentence $\varphi \in \mathcal{T}$.

 φ is decomposable in the theory \mathcal{T} , if there exist sentences $\theta \in \mathcal{T}, \psi \in \mathcal{T}$, such that θ, ψ contain symbols only from φ and do not have common signature symbols, neither of them is an equality formula, and $\theta, \psi \vdash \varphi$. We call θ and ψ the decomposition components for the sentence φ .

If there are no such θ and ψ , then φ is called **non-decomposable in the theory** \mathcal{T} .

Proposition 4 Every theory T has a system of axioms that consists of irreducible nondecomposable sentences.

The main auxiliary result:

Lemma 1 For any non-trivial decomposition $\mathcal{T}=S_1\otimes S_2$ in a product of theories with signatures $\Sigma = \Sigma_1 \coprod \Sigma_2$ ($\Sigma_1 \neq \emptyset \neq \Sigma_2$), every non-decomposable sentence $\varphi \in \mathcal{T}$ that contains signature symbols, follows only from $\langle S_1, \mathcal{T}^{\#} \rangle$ or only from $\langle S_2, \mathcal{T}^{\#} \rangle$.

If, additionally, φ is irreducible, then it is contained either in the theory $\langle S_1, T^{\#} \rangle$ of the signature Σ_1 , or in the theory $\langle S_2, T^{\#} \rangle$ of Σ_2 . In particular, it contains symbols only from Σ_1 or only from Σ_2 .

IIS SE RAS How minimization can help

For each formula ψ in a signature Σ it is possible to consider the set of symbols $supp(\psi)$ used in this formula. Denote the number of symbols by $np(\psi) = #(supp(\psi))$.

Let us define a *weight* of a formula ψ as an integer

$$w(\psi) = 3^{np(\psi)} = 3^{\#(supp(\psi))}.$$

Remark 2 The number 3 is chosen for the inequality $3^{n+m} > 3^n + 3^m$ to hold for any integers n, m (in particular, for the total weight of decomposition fragments of a formula to be less, than the weight of the formula itself).

Definition 4 Let us call the sum of the weights of axioms of a system Ψ

$$w(\Psi) = \sum_{\psi \in \Psi} w(\psi)$$

as the weight of a system Ψ .

Let us call a system Ψ of axioms **minimal**, if it has a minimal weight.

As the weights are represented by integers, it is always possible to choose a system Ψ of axioms of a minimal weight (from known systems of axioms). We will further assume that the system Ψ has a minimal weight. The following proposition explains, how such a system can be used in solving the decomposability problem.

Proposition 5 Let Ψ be a minimal system of axioms for a theory \mathcal{T} . Then it consists of non-decomposable irreducible sentences of \mathcal{T} .

We have:

IIS SB RAS

- 1. a (non-constructive) decomposability criterion;
- 2. uniqueness of decomposition, which justifies search for an algorithm;
- 3. the minimization task for systems of axioms as a reduction of the decomposability problem;
- 4. elimination of functional symbols and skolemization do not disturb decomposition components.

What next:

- 1. decidability issues;
- 2. decomposition algos for concrete cases;
- 3. expand the framework onto non-classical logics and relative decomposability (when *some* common symbols between components are allowed).

Thank you very much for attention