
Approximative Retrieval of
Attribute Dependent Generalized Cases

Rainer Maximini, Alexander Tartakovski
University of Hildesheim

Institute for Mathematics and Applied Computer Science
Data and Knowledge Management Group

D-31141, Hildesheim, Germany
{r maximi|tartakov}@dwm.uni-hildesheim.de

Abstract

In our current research project about electronic
designs the problem to retrieve attribute depen-
dent generalized cases occurs. This kind of cases
cover an arbitrary subspace rather than a point in
the space, spanned by the cases attributes and by
a set of constraints. For such representations, the
similarity assessment between a point query and
generalized cases is a difficult problem for which
this paper presents a solution. We developed and
evaluated a converter, which samples the spawn
subspace for each case, selects reasonable point
cases out of it, and creates a new case base with
only point cases belonging to the current general-
ized case. For this case base well-known retrieval
engines can be used where only less modifica-
tions have to be made.

1 Introduction
In CBR applications, the traditional concept of a case is that
of a point in the attribute space, spawned by the cases’ at-
tributes. Commonly, this space is called problem–solution
space when the attributes can unambiguously be related to
the problem description or the solution description, respec-
tively. Driven by examinations of several new applications
(see 1.1), we proposed the concept of generalized cases
[Bergmann et al., 1999; Bergmann and Vollrath, 1999;
Bergmann, 2002]. A generalized case covers not only one
point of the attribute space, but a whole subspace of it. A
single generalized case immediately provides solutions to
a set of closely related problems rather than to one single
problem only. The solutions a generalized case represents
are very close to each other; basically they should be con-
sidered as (slight) variations of the same principle solution.
In general, a single generalized case can be seen as an im-
plicit representation of a (possibly infinite) set of traditional
“point cases”. We assume that the similarity to a general-
ized case is the similarity to the most similar point of the
case.

We also want to make clear that the idea of generalizing
cases is not a radically new concept. It was already implic-
itly present since the very beginning of CBR and instance-
based learning research [Kolodner, 1980; Bareiss, 1989;
Salzberg, 1991]. However, in this paper we explore a more
formal and systematic view on generalized cases by using
constraints to express the dependencies between several at-
tributes. This partially covers also the above mentioned
related work.

This paper is structured in the following way: The end

of the current section presents our application scenario fol-
lowed by section two where the foundations of generalized
cases are defined and where the research problem is clar-
ified. The third section deals with existing solutions for
a partial problem, whereas section four presents our ap-
proach to solve the whole retrieval problem. The succeding
section five introduces the test domain and case base and
evaluates our approach. We close our paper with a sum-
mary and give ideas for future developments in this area.

1.1 Our Application Domain: Electronic Design
IPs

Increasingly, electronics companies integrate Intellectual
Properties (IPs) from third parties within their complex
electronic systems. An IP is a design object whose major
value comes from the skill of its producer [Lewis, 1997],
and a redesign of it would consume significant time. How-
ever, a designer who wants to reuse designs from the past
must have a lot of experience and knowledge about existing
designs, in order to be able to find candidates that are suit-
able for reuse in his/her specific new situation. Currently,
searching electronic IP databases can be an extremely time
consuming task because of two main reasons: On the one
hand, the public-domain documentation of IPs is very re-
stricted and on the other hand there are currently no intel-
ligent tools to support the designer in deciding whether a
given IP from a database meets (or at least comes close to)
the specification of his/her new application. This is one
objective of the current project IPQ: IP Qualification for
Efficient Design Reuse1 funded by the German Ministry of
Education and Research (BMBF) and the related European
Medea project ToolIP: Tools and Methods for IP2.

IPs usually span a design space because they are descrip-
tions of flexible designs that have to be synthesized to hard-
ware before they actually can be used. The behavior of the
final hardware depends on a number of parameters of the
original design description. The valid value combinations
for these parameters are constrained by different criteria for
each IP.

1IPQ Project (12/2000 - 11/2003). Partners: AMD, Fraun-
hofer Institute for Integrated Circuits, FZI Karlsruhe, Infineon
Technologies, Siemens, Sciworx, Empolis, Thomson Multi Me-
dia, TU Chemnitz, University of Hildesheim, University of
Kaiserslautern, and University of Paderborn. See www.ip-
qualifikation.de

2See toolip.fzi.de for partners and further information.



2 Foundations

2.1 Case Classification

Maximini, Maximini, and Bergman [Maximini et al., 2003]
introduced a formal classification schema for cases in
attribute-value representation. We consider the attribute
space A = T1 × · · · × Tn. Ti are atomic types which are
data types with single values like integer, float, boolean,
symbol, string, date, or time. Each case has n attributes
A1, . . . , An with an associated type Ti.

We start our definitions with the easiest kind of cases,
namely the point cases.

Definition 2.1 A point case PC is exact one element of the
attribute space, PC ∈ A, i.e., each attribute of PC has a
concrete atomic value, unequal to unknown.

A point case, e.g. c1 in figure 1, can be regarded as a spe-
cial instance of another concept, namely generalized cases.

Definition 2.2 A generalized case GC is an arbitrary sub-
space of the attribute space, GC ⊆ A.

Generalized cases can be interpreted as an (infinite) set
of point cases. The main difference in the following two
definitions is the kind how this set is defined. The most
simple form of a GC is the attribute independent general-
ized case (AIGC).

Definition 2.3 Assume there exists sets A1, . . . , An with
Ai ⊆ Ti. An attribute independent generalized case AIGC
is defined as AIGC = A1 × · · · × An. Consequently,
an AIGC is a special subspace of the attribute space,
AIGC ⊆ A.

Attribute independent generalized cases often occur in
applications in which not all attributes of the case are
known or where attribute values have been removed, e.g.
by maintenance operations. Unknown attribute values are
usually interpreted as arbitrary, i.e., they can be considered
to spawn the whole attribute dimension in A. Hence, this
can be represented by Ai = Ti, e.g. c2 in figure 1. Another
common reason for a case to be an AIGC is because some
attributes hold intervals (range) or sets as values, see c3.
Further, a query is usually an AIGC, because the solution
attributes are not defined.

The second form of GCs are the attribute dependent gen-
eralized cases (ADGC).

Definition 2.4 A generalized case ADGC ⊆ A that can-
not be represented as an AIGC is called attribute dependent
generalized case.

Hence, a GC is attribute dependent if the subspace it
represents cannot be decomposed into independent subsets
for each attribute. Dependencies can be expressed by con-
straints like demonstrated by c4 and c5 in figure 1. There-
fore, these cases are more complex and difficult to han-
dle during retrieval, depending on the form of the spawned
subspaces. Roughly speaking, AIGCs spawn a subspace
which is orthogonal (except AIGC with sets) and are there-
fore manageable in case that similarity measures are also
decomposed according to the attributes. For ADGCs the
subspace is arbitrary and hence it may become computa-
tionally very hard to determine the similarity to a PC or
another GC [Bergmann et al., 1999].

The main focus in this paper is the retrieval step between
a PC or AIGC query and a case base of ADGC. For this
step it does not matter if the query is a PC or an AIGC.

c4

B

A

B = 5
A = 5

c1

���
���
���
���

���
���
���
���

B

A

A = [2, 7]

c3

B = [3, 6]

B

A

A = 5

c2

B = unknown

��
��
��
��
��

��
��
��
��
��

B

A

c5

A^2 + B^2 = 1

B

A

B = A * A
A = [0, 5]

Figure 1: Examples for the three kind of cases

2.2 The Research Problem: Similarity
Assessment and Retrieval

The important basic research issues involved when using
ADGCs are related to representation formalisms, similarity
assessment, and retrieval. One serious complication when
studying these issues is that they are strongly connected
with each other. Depending on the expressiveness of the
representation formalism used for the ADGCs, similarity
assessment is getting computationally more difficult, which
also impacts the overall computational effort for retrieval
from a large case base.

The similarity definition between a PC (x) and an ADGC
(y) is presented in equation 1 and between an AIGC (x) and
an ADGC (y) in equation 2.

sup
∀yt∈y

{sim(x, yt)} (1)

sup
∀xs∈x,yt∈y

{sim(xs, yt)} (2)

In these equations the association is used that a general-
ized case is a possibly infinite set of point cases and we are
searching the two nearest points. Equation 1 is a special
case of 2, because the query is a PC instead of an AIGC.

Nevertheless, the main problem is the computational
complexity of such similarity functions why it is important
to develop procedures that distinguish between an offline
and an online phase. During the offline phase all computa-
tions should be done which are independent from the query,
like creating an index. Unlike, the online phase is query de-
pendent and should be very fast to reduce the response time
of the retrieval. Consequently, the more calculations can
be moved to the offline phase, the faster will be the online
phase.

3 Existing solutions
Mougouie and Bergmann [Mougouie and Bergmann, 2002;
2003] present a mathematical optimization solution that in-
stead of calculating the exact similarity between a query
and each ADGCjust returns a ranking of the cases to find
the most similar ones. Therefore, the upper and lower
bounds for each case have to be calculated in relation to



the query so that they can be compared afterwards (see fig-
ure 2). This idea is similar to the fish and shrink algorithm
[Schaaf, 1996].

gc3

q lb

lb ub

lb
ub

ub

gc1

gc2

(a) define

gc2

gc3

q

gc1

(b) compare

Figure 2: Lower and Upper Bounds

A case can be ignored, if the lower bound of the case is
higher than the upper bound of another case, e.g. in figure
2 the upper bound of gc2 is lower than the lower bound
of gc3 why gc3 can be removed. Until now, no statement
can be made about gc1 and gc2, so their bounds have to be
refined. The following algorithm presents the idea:

findMostSimilarCases(caseBase, query)
remainingCases = caseBase
while(isRefinementOfBoundsPossible())
refineBoundsForEachCase()
removePossibleCases(remainingCases)

return remainingCases

This similarity assessment problem can now be formu-
lated as an optimization problem:

max sim(q, x) s.t. h(x) ≤ 0,

where h is a set of m functions h1, h2, . . . that repre-
sents the ADGC by h(x) ≤ 0, i.e., x ∈ ADGC ⇐⇒
∀i hi(x) ≤ 0. In this optimization problem, max is the
objective function to be maximized.

Mougouie and Bergmann use ADGCs that are repre-
sented through constraints over an n-dimensional real-
valued vector space. It is shown that the difficulty depends
on whether the ADGC spawns a convex or nonconvex sub-
space which is defined by the constraints. For convex con-
straints and by usage of convex similarity measures, the
Topkis-Veinott method can be easily applied to determine
exactly the similarity between a query (point case) and an
ADGC. If the similarity measure is nonconvex or the gener-
alized case contains also nonconvex constraints, the prob-
lem is more difficult. For this situation an algorithm is pro-
posed that allows to incrementally compute sequences of
upper and lower bounds for the similarity and assures the
convergence of the algorithm. It allows to rank general-
ized cases without the exact computation of all similarity
measures.

The current state of the algorithm has two main disad-
vantages. Firstly, it is only analyzed for real valued at-
tributes. But in real live applications also symbolic values,
integers or strings are needed. Secondly, the calculation of
the bounds is complex and query dependent why it has to
be done during the online phase. Presumably, this results
in a high retrieval response time which is, for example in e-
commerce application like our IPQ project, not acceptable.

4 Sampling Converter
As described above we made two main demands on our
system:

• The retrieval response time should be short enough to
use the system in e-commerce applications.

• All common attribute types should be handled.

Especially the last point forces us to reuse existing mod-
ules as much as possible, like retrieval engines for point
cases. This results into a very simple concept:

• Transform the ADGC into point cases to use well re-
searched and fast retrieval engines.

• To prevent a large increase of the case base size, which
could destroy the fast response time, give the user in-
fluence onto the conversion process and use additional
intelligent modules.

Of course, the quality of the retrieval result mainly de-
pends on the sampling quality and the number of result
cases. But the conversion is done in the offline phase where
enough intelligence can be put into the converter to receive
a sufficient case base quality which more likely results in a
good retrieval quality. The online phase is nearly the same
as for retrieval with traditional point cases. It has only to be
granted that all retrieved cases originally belonged to dif-
ferent ADGCs or PCs, which will be described in section
4.2.

foreach adgc
calculateTestCases(adgc)
foreach testcase
validateConstraints(testcase)
if testcase valid

pcCaseBase.add(testcase)

The retrieval result includes the concrete PC, its corre-
sponding ADGC, and the similarity measure. With this
information an additional retrieval explanation component
can help the user to understand for which values the ADGC
fits to the query. Additionally, the possible variations of the
values can be explained and support can be given to refine
the query.

4.1 Offline Phase
Design of the Converter Core System
To continuously evaluating and testing new ideas we have
developed a modular converter with fixed interfaces to re-
place modules independently from others. This allowed
us to implement first very simple modules which are ex-
changed by intelligent ones continuously. The four core
modules are bounding box generator, test case generator,
test case validator, and case base manager. Of course, there
are more modules and components to realize such a con-
verter, like case base reader and writer, but they are not
of interest for the scope of this paper. The design of the
converter is presented in figure 3 and explained in the fol-
lowing subsections.

The core system executes a loop for each ADGC
whereby three case bases are used: origCaseBase is the
original case base with ADGCs, pcCaseBase is the result-
ing case base with point cases only, and gcCaseBase is a
temporary case base including the PCs of a current ADGC.

Bounding Box Generator
A big improvement was reached by restricting the possible
values of each attribute. Therefore, for each attribute either
the maximum and minimum values are calculated or a set
of possible values. These values define a bounding box
around the case for which several knowledge containers
can be used. We have implemented two kinds of bounding
box generators with different complexities and qualities:



Case Base
Reader

Case Base
Writer

Bounding Box
Generator

Test Case
Generator

Case Base
Manager

Test Case
Validator

Converter Core System

Figure 3: Modular Design of the Converter

1. The simplest one uses only the information from the
model. For each attribute the data type definition is
converted into the description of a bounding box. Any
further information from other knowledge containers
is ignored.

2. A more advanced one initializes the bounds like the
previous one, but takes also the constraints of the
ADGC into account. Each constraint is analyzed inde-
pendently from other constraints or attributes, e.g., by
a constraint with a case differentiation the possible re-
sult values are taken without checking the conditions.

Our tests have shown that the second one is a good
balance between performance and quality. The additional
computations to the first one are minimal why we used the
second bouding box generator in our further tests.

Test Case Generator
The test case generator uses the information from the
bounding box generator to generate test cases. Here we
also have implemented three kinds of generator:

1. We started with a pure random generator which ran-
domly selects values from the bounding box. In aver-
age this produces an equal distribution over the sub-
space of the case if enough test cases are generated.

2. Additionally to the previous one, information about
the similarity measures are taken into account. At-
tributes with a high global similarity weight receive
a finer distribution than attributes with a low weight.
Although this does not lead to an equal distribution
any more, the retrieval quality increases. Therefore,
this solution should be preferred.

3. A further improvement was to increase the density at
the border of the ADGC. The theory behind this exten-
sion is that the shortest distance between a query and
a generalized case is on the border of the generalized
case, except the query is an element of its subspace.
To take this fact into account the probability for the
attribute values at the edge of the bounding box are
increased.

Each implementation returns a list of test cases which
is furthermore sorted by the third algorithm, starting with
the most important ones. This necessary later for the case
base manager (see 4.1). For the evaluation we have used
the second implementation, because the third one was not
implemented so far.

Test Case Validator
It has to be checked if the test case is an element of the
subspace of the ADGC. This is realized with a constraint
checker by validating each constraint with the values of the

test case. This is, of course, much more easy than propagat-
ing the constraints or using the mathematical optimization
method as described in 3.

Case Base Manager
The case base manager creates for each generalized case
an own case base where all corresponding point cases are
collected. At the end of the ADGC conversion loop, this
case base is merged with the global case base pcCaseBase.
But some additionally tasks are further executed:

• The manager takes care about the size of the gcCase-
Base. If the size grows above a user specified thresh-
old all further cases are ignored. This implies that the
most important cases should be added first which is
granted by the test case generator.

• To recognize later which PC belongs to which ADGC,
each PC is marked with the id of the ADGC. This
mark is very important for the retrieval engine (see
section 4.2) and for the result explanation component.
This explanation component is necessary to explain
the user why and with which concrete values his or
her query fits to the retrieved cases.

• To improve the case base quality the case base man-
ager takes care that the generated point cases are not
too near to each other. This is done by a retrieval on
the respective gcCaseBase with the possible new point
case as query. Only if the similarity of the nearest
case is lower than a user specified maximum similar-
ity threshold (maxSim) the case is added to the gc-
CaseBase. Figure 4 presents the original point cases
and the resulting point cases.

Figure 4: Retrieval Problem

The density can be adjusted by the similarity which is
presented as the dotted circles around the point cases.
This produces a good distribution over the ADGC and
decreases the gcCaseBase’s size without a lack of in-
formation or with only a small one for the retrieval. To
guarantee a high coverage at the borders it is important
to perform the adding in order of the importance of the
cases.

4.2 Online Phase
After the conversion, the resulting point case base (pcCase-
Base) includes a lot of PCs and AIGCs which belong to
a few number of ADGCs. If a common retrieval engine
would be used the retrieval result would be not the expected
one. Imagine the case base in figure 5 with the four gen-
eralized cases, the 24 corresponding point cases, and the
query.

If the three most similar cases would be requested the
retrieval engine would only retrieve point cases which be-
long to the same ADGC. This is of course not the result
expected by the user. To prevent this only one small mod-
ification to the retrieval engine had to be done. Each point
case was marked by the case base manager (see 4.1) with a



query

Figure 5: Retrieval Problem

label to identify the original ADGC. This label can now be
used to decide if a new received point case pcn is added to
the retrieval result list or not. We can distinguish between
three cases:

1. The retrieval result list includes no case with the same
referenced ADGC like pcn, consequently pcn is added
to the retrieval result list.

2. The retrieval result list includes a case pcl with the
same reference and a lower similarity than pcn, con-
sequently pcn is added to the retrieval result list and
pcl is removed from it.

3. The retrieval result list includes a case pch with the
same reference and a higher similarity than pcn, con-
sequently pcn can be ignored because pch exists in the
result list with a better similarity to the query.

5 Evaluation and Results
To evaluate the converter simplified IPs from our IPQ
Project (see 1.1) are used. The original case model of an
IP consists of more than 500 attributes, but by using them
the results would have been too difficult to interpret. There-
fore, we have selected seven typical attributes for our sim-
plified model:

FunctionalClass : is an atomic value of 222 constant sym-
bolic values which are ordered in a taxonomy.

PowerConsumption : is an atomic floating point value
whose domain is defined in the range 0 to 500.0.

MarketSegment : is an atomic value of 51 constant sym-
bolic values which are ordered in a taxonomy.

CoreVoltage : is a atomic floating point value whose do-
main is defined in the range 0 to 24.0.

Hardness : is an atomic value with the three symbolic
constants Hard, Firm, and Soft.

CacheSize : is an atomic integer value whose domain is
defined in the range from 0 to 216 in exponential steps.

ConfigurationRegister : is an atomic integer whose do-
main is defined in the range from 0 to 28.

Between these attributes several constraints can be de-
fined for whose we have developed an own representation
formalism [Maximini, 2002]. The following constraints are
five typical examples:
<MarketSegment> = {Home,Military, Aerospace}
<Hardness> = {Hard,F irm}
<CacheSize> ={

[0, 32] if <Hardness> == Hard
[0, 512] if <Hardness> == Firm

<CoreVoltage> =


1.5 if <MarketSegment> == Military
1.1 if <MarketSegment> == Aerospace
2.5 else

<PowerConsumption> =
<CoreVoltage> ∗ 0.5 + <CacheSize> ∗ 0.2

The origCaseBase consists of 100 manually created
ADGCs with different kinds of constraint. For the evalu-
ation we focused our test on the following four questions:

• How much test cases should be generated?

• How stable is the conversion process?

• How stable is the retrieval?

• How good is the diversity optimization?

5.1 How much test cases should be generated?
To answer this question we have first calculated the maxi-
mum number of correct point cases manually. Thereby, the
scala of the two attributes with floating point values had to
be discretized (1000 values for each) to avoid an infinite set
of point cases.

Figure 6 presents the relation between the number of
generated test IPs (x-axis) and the percentage of coverage
for 11 manually selected distinguished IPs (y-axis), that are
identified by their ids. The percentage of coverage is the
number of IPs (correct validated test IPs) divided by the
manual calculated maximum number of PCs

Figure 6: Case coverage for n test cases.

Three groups of ADGCs can be distinguished:

• ADGCs which reach very fast a coverage of 100% like
case 21, 41, 44, and 73. The corresponding constraints
consist in general of discrete values and of case dif-
ferentiations whereby the results of the case differen-
tiations are fixed values like for the CoreVoltage at-
tribute. Consequently, the bounding box includes only
these result values why the number of possible test
cases is very small.

• ADGCs where the coverage increases very slow like
case 35, 88, and 93. These cases contain constraints
which are defined for attributes with floating point val-
ues and are mathematical functions for which the re-
sult values are not calculated. To get a coverage of
100% it would be necessary to generate an infinite
number of test cases which is not possible.

• ADGCs where the coverage increases slowly like case
38, 83, 89, and 92. For these cases the constraints
are defined for discrete values, but include also math-
ematical operations where the complete domain of the
corresponding attribute is used by the bounding box
generator. Other constraint types are case differenti-
ations with intervals as result values. Consequently,
there exist much more values than in the second case
which increases the number of possible test cases.

Summarizing, the number of test cases depends on the
kind of constraints and data types of the attributes. For



discrete values 1000 test cases are sufficient to get a cov-
erage of at least 80%. But if the constraints are defined
on attributes with floating point values the number has to
be increased to 100.000 or more. Nevertheless, the correct
number is very application dependent and has to be evalu-
ated for each application by tests.

5.2 How stable is the conversion process?
Because of the random generation of test cases it is inter-
esting to test the stability of the conversion process. There-
fore, the number of test cases which are necessary to get
a minimum coverage of 80% are calculated manually. For
each case the conversion is done ten times with this mini-
mum number of test cases and the corresponding coverage
is calculated. Figure 7 presents the results.

Figure 7: Stability of the Conversion Process

All cases reached the minimum coverage of 80% in each
test run. For the case groups one and three of section 5.1
the coverage is constant, only in the second group are some
variations of the coverage which is based on the poor han-
dling of floating point value attributes.

5.3 How stable is the retrieval?
The previous subsection presented that an ADGC can be
approximated by PCs which are randomly created. Now
the question is analysed whether the retrieval on the result-
ing case base always returns the same cases in the same
order. Therefore, the case base of 100 ADGCs was con-
verted ten times in a case base of point cases. On each
case base the same query was performed and the ranking
of the 10 best cases is analysed. Figure 8 presents the re-
sults where the x-axis presents the ranking position and the
y-axis the cases and the frequency how often it is returned
at the corresponding ranking position.

Figure 8: Stability of the Retrieval

The results have proofed that the retrieval is stable for
the first ten best matching cases out of 100, except for one

case base where at the tenth position another case was re-
turned. Further analyses have shown that in this case case
21, which should have been returned at the tenth position
was returned on the eleventh position. Several test runs
with different queries have been performed and the stabil-
ity of the retrieval could be reinforced.

5.4 How good is the diversity optimization?
Section 4.1 describes a similarity based optimization of the
diversity of the PCs for each ADGC. For the previous eval-
uations a maximum similarity value (maxSim) of 1.0 was
used, consequently no optimization was done. This section
analyses the influence of different maxSim values on the
retrieval result as well as the performance improvement.
Therefore, one reference case base with maxSim = 1.0
was created, four with maxSim = 0.98, and four with
maxSim = 0.95. Furthermore, three different query cases
have been build that have been used for all retrievals.

Table 1 presents the sizes of the case bases with different
maxSim values.

maxSim = 1.0 maxSim = 0.98 maxSim = 0.95

85 MB 195 KB 110 KB
(100%) (0.22%) (0.12%)

Table 1: Case base size with different maxSim values.

The following Table 2 presents the retrieval evaluation
of three different queries. Each table contains the ranking
of the case ids of the retrieval result for the nine case bases.

1.0 0.98 0.95
39 39 39 39 39 40 40 40 40
4 4 4 4 4 4 4 4 4

28 28 28 28 28 28 39 28 28
20 20 20 20 20 20 20 20 20
64 64 64 64 64 63 64 63 64
40 40 40 40 40 55 63 55 63
76 76 76 76 76 64 76 64 76
96 96 96 96 96 88 96 88 96
88 88 88 88 88 76 88 76 88

1.0 0.98 0.95
17 17 17 17 17 17 17 17 17
39 39 39 39 39 39 39 39 39
7 7 7 7 7 7 7 7 7

44 44 44 44 44 54 54 44 44
54 54 54 54 54 60 44 54 54
60 60 60 60 60 75 60 60 60
85 76 85 85 85 88 85 85 85
76 85 76 76 76 85 76 76 76
75 75 75 75 75 76 75 75 75

1.0 0.98 0.95
17 17 17 17 17 17 17 17 17
54 55 54 54 55 54 54 54 54
13 13 13 13 13 13 13 13 13
7 7 7 7 7 7 7 7 7
14 14 14 14 14 14 14 14 14
39 39 39 39 54 39 39 39 39
70 75 55 76 70 55 70 76 70
55 76 70 55 39 70 55 55 55
76 88 88 70 76 76 76 70 76

Table 2: Retrieval results of three different queries.

The ranking between maxSim = 1.0 and maxSim =
0.98 is nearly identically, only few cases differ in one po-
sition. Therefore, the retrieval result can be defined as



identically in respect of the random generation where also
the ranking of maxSim = 1.0 can slightly differ as de-
scribed in section 5.3. But with maxSim = 0.95 the situ-
ation has changed dramatically because the ranking differs
very strong by several positions and some cases are missing
completely in the top ten.

With the resulting case base’s size in mind it is recom-
mend to use this optimization, because it decreases the case
base’s size extremely without a significant lack of infor-
mation for the retrieval, but to choose the maxSim value
carefully.

6 Summary and Outlook

We have presented a realization for a retrieval on attribute
dependent generalized cases with a configurable converter.
It transforms a case base with ADGCs into a case base with
point cases or AIGCs for which common retrieval engines
can be used with only few modifications.

Furthermore, we have done several tests to evaluate the
quality of the converter, substantiating that it is a stable and
sufficient technique for our IP domain in the IPQ project.
Especially the similarity based optimization of the final
case base decreases the case base’s sizes dramatically with-
out reducing the retrieval quality.

Nevertheless, the handling of attributes with floating
point values has to be improved. One possibility is to adapt
the constraint validater to make a similarity comparison of
the values instead of an exact one. Also for the test case
generator and for the bounding box generator exist enough
space for improvements.

References
[Ashley and Bridge, 2003] Kevin D Ashley and Derek G

Bridge, editors. Case-Based Reasoning Research and
Development, Proceedings of the Fifth International
Conference on Case-Based Reasoning (ICCBR’03),
Lecture Notes in Artificial Intelligence, 2689. Springer
Verlag, 2003.

[Bareiss, 1989] Ray Bareiss. Exemplar-Based Knowledge
Acquisition: A unified Approach to Concept Represen-
tation, Classification and Learning. Academic Press,
1989.

[Bergmann and Vollrath, 1999] R. Bergmann and I. Voll-
rath. Generalized cases: Representation and steps to-
wards efficient similarity assessment. In W. Burgard,
Th. Christaller, and A. B. Cremers, editors, KI-99: Ad-
vances in Artificial Intelligence., LNAI 1701. Springer,
1999.

[Bergmann et al., 1999] R. Bergmann, I. Vollrath, and
T. Wahlmann. Generalized cases and their application to
electronic designs. In E. Melis, editor, 7. German Work-
shop on Case-Based Reasoning (GWCBR’99)., pages 6–
19, 1999.

[Bergmann, 2002] Ralph Bergmann. Experience Manage-
ment - Foundations, Development Methodology, and
Internet-Based Applications. Lecture Notes in Artifi-
cial Intelligence 2432. Springer Berlin, Heidelberg, New
York, Hong Kong, London, Milan, paris, Tokyo, 2002.

[Kolodner, 1980] Janet L Kolodner. Retrieval and Organi-
zational Strategies in Conceptual Memory. PhD thesis,
Yale University, 1980.

[Lewis, 1997] Jeff Lewis. Intellectual property (IP) com-
ponents. Artisan Components, Inc., [web page],
http://www.artisan.com/ip.html, 1997. [Accessed 28 Oct
1998].

[Maximini et al., 2003] Kerstin Maximini, Rainer Maxi-
mini, and Ralph Bergmann. An investigation of gener-
alized cases. In Ashley and Bridge [2003], pages 261–
275.

[Maximini, 2002] Rainer Maximini. Ipq: Concepts for
the representation of parametrized ip by constraints in
the sense of artificial intelligence. Technical report,
University of Hildesheim, Data and Knowledge Man-
agement Group, P.O.Box 101363, D-31113 Hildesheim,
Germany, August 2002.

[Mougouie and Bergmann, 2002] B. Mougouie and
R. Bergmann. Similarity assessment for generalizied
cases by optimization methods. In Proceedings of
the European Conference on Case-Based Reasoning
(ECCBR-02). Springer., 2002.

[Mougouie and Bergmann, 2003] Babak Mougouie and
Ralph Bergmann. Diversity-conscious retrieval from
generalized cases: A branch and bound algorithm. In
Ashley and Bridge [2003], pages 319–331.

[Salzberg, 1991] S Salzberg. A nearest hyperrectangle
learning method. Machine Learning, 6:277–309, 1991.

[Schaaf, 1996] Jörg W. Schaaf. Fish and shrink: a next
step towards efficient case retrieval in large scaled case
bases. In Smith and Faltings [1996], pages 362–376.

[Smith and Faltings, 1996] Ian Smith and Boi Faltings, ed-
itors. Advances in Case-Based Reasoning, Lecture
Notes in Artificial Intelligence, 1186. Springer Verlag,
1996.


