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Abstract

This paper addresses the similarity assessment
and the retrieval problems in Case-Based Rea-
soning for case bases consisting of traditional
and generalized cases. Previous work focussed
on similarity assessment for generalized cases
with continuous domains. The similarity assess-
ment problem was formulated as Nonlinear Pro-
gramm (NLP), which is well known in mathe-
matical optimization. In several real world ap-
plications (e.g. in our project) generalized cases
have mixed discrete and continuous domains.
This paper provides a formulation of similarity
assessment problem for such generalized cases
as a Mixed Integer Nonlinear Optimization Pro-
gramm (MINLP). Furthermore this paper pro-
poses two different index-based methods solving
the retrieval problem.

1 Introduction
The smallest experience item in Case-Based Reasoning is
calledcase. It is a point in case space, i.e. in the Carte-
sian product of problem spaceP and solutionS space. A
case assigns a single solution to a single characterization of
some problem.
Several applications, e.g. selection of parameterized prod-
ucts within electronic commerce, lead to an extension of
this concept. A case that covers not only a point of the
case space but a subspace of it is calledgeneralized case
[Bergmannet al., 1999], [Bergmann, 2002]. A single gen-
eralized case provides a set of solutions to a set of closely
related problems. It can be viewed as an implicit represen-
tation of a (possibly infinite) set of traditional point cases,
formally: GC ⊆ P× S.
The extension of the case concept implies the extension
of a similarity measure. A reasonable possibility is to de-
fine the similarity between a query and a generalized case
as the similarity between the query and the most simi-
lar point-case that the generalized case includes, formally:
sim∗(q,GC) := max{sim(q, c)|c ∈ GC}.
This problem was regarded in previous work with a focus
on generalized cases with continuous domains[Bergmann
and Vollrath, 1999], [Mougouie and Bergmann, 1999]. In
several real world applications (e.g. in our project) the do-
mains are mixed, i.e., some attributes of a case space are
continuous and some of them are discrete. In chapter 2
we introduce an optimization-based approach to solve this
problem.
Because of a high computational complexity of the similar-

ity assessment problem it is not satisfiable to use a linear re-
trieval method. It is important to investigate an index-based
retrieval in order not to solve all hard assessment problems
if a query arises. In chapter 3 we present two index-based
approaches to retrieve from case bases consisting of gener-
alized cases and point cases with mixed integer and discrete
domains.

2 Optimization Based Similarity
Assessment

In this section we characterize a relationship between the
similarity assessment problem for generalized cases and
the optimization problem in mathematics. Furthermore we
describe how to treat the similarity assessment problem for
generalized cases with continuous domains. The main idea
of this approach is to formulate the assessment problem
as nonlinear optimization problem (NLP), which can be
solved with common optimization software. Afterwards
we present a new approach to treat the similarity assess-
ment problem for generalized cases with mixed discrete
and continuous domains. Here we formulate the assess-
ment problem as the specific optimization problem called
mixed integer nonlinear optimization problem(MINLP)as
well. In contrast to NLP formulation MINLP formulation
is much more complex. We discuss this approach on a con-
crete example from our project.

2.1 Similarity Assessment as Optimization
Problem

For retrieval of generalized cases, the similarity between
a problem and a generalized case must be determined. A
natural way is to extend a traditional similarity measure as
follows [Bergmann and Vollrath, 1999]:

sim∗(q, gc) := max{sim(q, c)|c ∈ GC} (1)

According to this definition the value of the extended
similarity functionsim∗(q, GC) is equal to the similarity
sim(q, c) between a queryq and the most similar point case
c containing in generalized caseGC.
Due to the fact that the similarity assessment problem can
be viewed as a specific optimization problem, we regard
first the last one. An optimization problem in mathemat-
ics is maximizing or minimizing of some objective func-
tion, often under restriction given through equalities and
inequalities. A general form can be defined as follows:

min
x

f(x)
s.t. x ∈ F

(2)

with f an objective functionandF a set of feasible solu-
tions(feasible set), implicit defined through constraints.



There is a direct relation between the similarity assess-
ment problem and the optimization problem[Bergmann
and Vollrath, 1999]. By defining an objective function
f(x) := sim(q, x) andF := GC cp. (1) we transform a
similarity assessment problem to a specific optimization
problem.
In mathematics several classes of optimization problems
are known. They differs in computational complexity,
methods of treating and in a problem formulation. On
account of this it is important to find out the class and
formulation of optimization problem by deriving it from
similarity assessment problem. These classes and for-
mulations differ for generalized cases with continuous
domains and for generalized cases with mixed discrete and
continuous domains. This is a content of the following two
subsections.

2.2 Similarity Assessment for Continuous
Domains

In this subsection we regard optimization based similarity
assessment for generalized cases with continuous domain.
This kind of cases is restricted to be connected sets in case
space spawned by continuous attributes. A single general-
ized case can be represented through equality and inequal-
ity constraints. The general form is:

GC = {x ∈ Rn|c1(x) ≥ 0 ∧ . . . ∧ ck(x) ≥ 0
∧ck+1(x) = 0 ∧ . . . ∧ cl(x) = 0} (3)

The constraint functionsci are not restricted to be linear,
they can also be nonlinear.
Now we are going to formulate an optimization problem.
For this we regard a similarity functionsim. Although
the aggregation function is commonly a weighted aver-
age, which is a linear function, the local similarities are
mostly nonlinear. A direct consequence is nonlinearity of
the global similarity functionsim. This property and the
property of generalized cases determine the class of opti-
mization problem we are going to derive. It is a nonlinear
optimization problem (NLP)[Bazaraa, M.S.et al., 1993]
having a general form as follows:

min
x

f(x)
s.t. ci(x) ≥ 0, i ∈ I,

ci(x) = 0, i ∈ E,
x ∈ Rn

(4)

This optimization problem has a nonlinear objective func-
tion and nonlinear constraints.
The formulation of the optimization problem is quite sim-
ilar to the formulation in the general case. The objective
function f is equal tosim(q, x) (with constant query q)
and the constraints set can be directly taken over.

2.3 Similarity Assessment for Mixed Domains
By mixed domains the formulation of an optimization
problem is much more complex. The most difficult issue
is handling of discrete attributes. In this subsection we
describe an example generalized case from the IPQ project
with such properties, we explain mixed integer nonlinear
optimization problem (MINLP) and present a formulation
of similarity assessment for example generalized case as
MINLP problem.

Example from the IPQ Project
The growing complexity of today’s electronic design forces
to reuse existing design objects, called IPs(Intellectual
Properties)[Lewis, 1997]. IP is a description of flexible
design that have to be synthesized to hardware. It usually
spans a design space. The behavior of the final hardware
depends on parameters of the design description. Experi-
ence management approaches can be used to support the
selecting process of existing IPs. It is one of the goals of
the current ProjectIPQ: IP Qualification for Efficient De-
sign Reuse1 founded by the German Ministry of Education
and Research (BMBF).
For electronic design IP discrete cosine transformation
(DCT) is a typical design object. It implements an algo-
rithm for (DCT) and its inverse operation which is needed
as an important part of decoders and encoders of the widely
known MPEG-2 video compression algorithm. The vari-
able parameters of the IP are shown in a following table:

Table 1. Selected parameters of the example IP.

parameter description
frequency f The clock frequency that can be ap-

plied to the IP.
area a The chip area the synthesized IP will

fit on.
width w Number of bits per input/output

word. Determines the accuracy of the
DCT. Allowed values are 6, 7, ..., 16.

subword s Number of bits calculated per clock
tick. Changing this design space pa-
rameter may have a positive influ-
ence on one quality of the design
while having a negative impact on
another. Allowed values are 1, 2, 4, 8
and no-pipe.

Now we present dependencies between the parameters
of an example IP:

f ≤





−0.66w + 115 if s = 1
−1.94w + 118 if s = 2
−1.74w + 88 if s = 4
−0.96w + 54 if s = 8
−2.76w + 57 if s = no− pipe

(5)

a ≥





1081w2 + 2885w + 10064 if s = 1
692w2 + 2436w + 4367 if s = 2
532w2 + 1676w + 2794 if s = 4
416w2 + 1594w + 2413 if s = 8
194w2 + 2076w + 278 if s = no− pipe

This IP can be viewed as a single generalized case with
parameterized attributesf, a, w, s and with not listed fixed
attribute values. The dependencies (5) between the param-
eterized attributes are represented according to format for
generalized cases introduced in[Maximini, 2002].

1IPQ Project(12/2000-11/2003). Partners: AMD, Frauenhofer
Institute for Integrated Circuits, FZI Karlsruhe, Infineon Tech-
nologies, Siemens, Sciworx, Empolis, Thomson Multi Media, TU
Chemniz, University of Hildesheim, University of Kaiserslautern,
and University of Padeborn. See www.ip-qualifikation.de



Mixed Integer Nonlinear Optimization Problem
The formulation of the assessment problem for generalized
cases with mixed discrete and continuous domain as NLP
can’t succeed. The reason is a combinatorial character of
the assessment problem which is not covered through an
NLP. Therefore we need to use a generalization of NLP
called mixed integer nonlinear program (MINLP)[Leyffer,
1993], which covers nonlinear and integer programming.
A general formulation of this problem follows:

min
x,y

f(x, y)

s.t. ci(x, y) ≥ 0, i ∈ I,
ci(x, y) = 0, i ∈ E,
x ∈ Rn, y ∈ Zn

(6)

The main difference to NLP is that the objective functionf
has an argument consisting of an continuous partx and an
integer party.
This problem is harder as NLP since it has in addition a
combinatorial character. The handling of this problem is
one of the actual research interests in mathematical opti-
mization. However since few years there are several indus-
trial solvers handling MINLP.

Similarity Assessment for Generalized Cases with
mixed integer and continuous domains as MINLP
Now we are going to explain a formulation of MINLP on
example of the DCT-IP. As in general case the formulation
consists of two parts: from modelling of a feasible set and
from modelling of the objective function. We start with the
first one.
Since a feasible set of MINLP is defined through equalities
and inequalities the following dependencies should be
transferred:

f ≤ −0.66w + 115 if s = 1
f ≤ −1.94w + 118 if s = 2

...

(7)

We define in place of the variables with a domainT (s) =
{1, 2, 4, 8, no− pipe} |T (s)| new variables:

s1, s2, s4, s8, sno−pipe ∈ Z
and a set of constraints:

s1 ≥ 0
s1 ≤ 1
s2 ≥ 0
s2 ≤ 1
...

(8)

Each new variable stays for a single attribute value of the
variables. So, if some new variablesv = 1 it implies
that s = v and contrary ifs = v thensv = 1. Since the
variables can have only one value to the same time, a new
additional constraint should be defined:

s1 + s2 + s4 + s8 + sno−pipe = 1 (9)

Now every valid assignment of variabless1...sno−pipe im-
plies a single value for the variables and every assign-
ment of variables implies a valid assignment of variables
s1...sno−pipe. Example:

s = 4 ⇔




s1

s2

s4

s8

sno−pipe


 =




0
0
1
0
0


 (10)

Now it is simply possible to formulate the dependencies (7)
as inequalities:

s1(−0.66w + 115− f) ≥ 0
s2(−1.94w + 118− f) ≥ 0

...

(11)

For s1 = 1 the first inequality is ”switched on” and the
other inequalities are ”switched off”, sinces2 = s4 = s8 =
0.
The feasible set of MINLP is given through the set of con-
straints (11), (8), (9) and additional through not listed be-
fore constraints with variablea inside:

s1(−0.66w + 115− f) ≥ 0
s2(−1.94w + 118− f) ≥ 0
...
s1(−1081w2 − 2885w − 10064 + a) ≥ 0
s2(−692w2 − 2436w − 4367 + a) ≥ 0
...
s1 ≥ 0
−s1 ≥ −1
s2 ≥ 0
−s2 ≥ −1
...
s1 + s2 + s4 + s8 = 1

(12)

f, w, a ∈ Rn ands1, s2, s4, s8 ∈ Zn

Now we proceed with an objective functionf . Because
of the introduction of new binary variables the formulation
of the functionf becomes more complex. To define the
objective function we regard the similarity function given
through local similarities and an aggregation functionΦ:

sim(q, c) := Φ(simf (qf , cf ), simw(qw, cw),

sima(qa, ca), sims(qs, cs),

simr1(qr1 , cr1), . . . , simrn(qrn , crn))

The symbolsr1, . . . , rn refer to not listed before and not
parameterized attributes.



The objective function can be formulated in the follow-
ing way:

fq(f, w, a, s1, . . . , sno−pipe, r1, . . . , rn) := (13)

Φ
(

simf (qf , f), simw(qw, w), sima(qa, a),

(
s1sims(qs, 1) + s2sims(qs, 2) + s4sims(qs, 4)

+s8sims(qs, 8) + sno−pipesims(qs, no− pipe)
)
,

simr1(qr1 , r1), . . . simrn
(qrn

, rn)
)

The trick by this formulation is based on the following fact:

sims(qs, s) =
(
s1sims(qs, 1) + s2sims(qs, 2) + s4sims(qs, 4)

+s8sims(qs, 8) + sno−pipesims(qs, no− pipe)
)

Regard the example (10) again. Assume thats1 = 0, s2 =
0, s4 = 1, s8 = 0 andsno−pipe = 0 is part of some valid
assignment accordantly to the constraint set (12). Then the
term:(
s1sims(qs, 1) + s2sims(qs, 2) + s4sims(qs, 4)

+s8sims(qs, 8) + sno−pipesims(qs, no− pipe)
)

is equal to:(
0sims(qs, 1) + 0sims(qs, 2) + 1sims(qs, 4)

+0sims(qs, 8) + 0sims(qs, no− pipe)
)

=

sims(qs, 4)

The objective function (13) together with the feasible set
(12) define a wanted MINLP, which solution provides the
similarity between the query q and the example generalized
case.
It is to mention that MINPL is a very hard problem, e.g. it
is harder than NLP and integer program IP. Normally this
problem is not solved exactly, but approximately.
There are several commercial solver on the market treating
this problem. Among of them Xpress-SLP, MINLP, GAMS
and so on.

3 Retrieval
Because of the high calculation complexity of the assess-
ment problem for generalized cases it is very important
to investigate an index-based retrieval. We developed two
new methods which reduce the response time, through
building and using of index-structures. In the first subsec-
tion we introduce a similarity based method, which takes
the similarity function into account to build a high efficient
retrieval tree. In the second subsection we introduce a kd-
Tree based method, which builds the index structure inde-
pendent from the similarity measure.

3.1 Similarity Based Retrieval Method
Because of the high complexity of the assessment prob-
lem for generalized cases we decided to develop a retrieval
method that takes into account a fix similarity measure for
building of an index structure.
A main step of this approach, is a partition of a problem
spaceP into some simple subspaces. An example of a such
simple partition is a hyperrectangle that has faces parallel
to the coordinate planes. Figure 1 shows a problem space
consisting of two continuous attributes that is partitioned

A1

A2

Figure 1: Partition with hyperrectangles

into hyperrectangles.
Every query arising in the online phase hits exactly one
of this subspaces, but it is unknown which subspace and
where in the subspace.
Furthermore, we define for a partitionPar and a general-
ized caseGC two similarity bounds:

Similaritymin(Par,GC) := (14)

min
s∈Par

sim∗(s,GC) = min
s∈Par

max
g∈GC

sim(s, g)

and

Similaritymax(Par,GC) := (15)

max
s∈Par

sim∗(s,GC) = max
s∈Par

max
g∈GC

sim(s, g)

gc3

q'

q'’
Par

gc1

gc2

gc4 gc5

gc6

gc7

A1

A2

Figure 2: Similarity bounds

Consider the partitionPar and the generalize casegc7 in
figure 2. The queryq′ hitting the partitionPar has a lowest
similarity to generalized casegc7 from all queries hitting
this partition. Exactly this similarity value is provided
by the functionSimilaritymin(Par, gc7). The query
q′′ hitting the partitionPar has a highest similarity to
generalized casegc7 from all queries hitting this partition.
Exactly this similarity value is provided by the function
Similaritymax(Par, gc7). If these bounds are known and
some query hits the partitionPar in the online phase we
can guarantee that its similarity to the generalized casegc7
lies between the boundsSimilaritymin(Par, gc7) and
Similaritymax(Par, gc7).



Based on this fact a retrieval approach can be simply
constructed. The first idea is to calculate in the offline
phase similarity bounds for all partitions and all general-
ized cases. Furthermore, it is necessary to derive a partial
order on generalized cases in terms of similarity for every
single partition and all generalized cases. The calculation
of the partial order is based on calculated bounds. Figure

sim
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gen. cases1 2 3 4 5

1

2 3

5

4

Figure 3: Similarity intervals and partial order

3 demonstrates uncertainty intervals given by similarity
bounds for some single partition and generalized cases
gc1 − gc5. Figure 3 demonstrates also a partial order on
generalized casesgc1 − gc5 induced through similarity
intervals. If a query arrises in the online phase, we only
need to check which partition it hitts. Then we can get
immediately the partial order and the similarity bounds
for all generalized cases. When searching for then best
nearest neighbours, we can exclude all cases havingn or
more predecessors in partial order. Finally we have to
perform linear retrieval on the rest of cases.
This method can be significant improved if we bound the
size of the retrieval set before building the index structure.
The customer is normally interested on at most10 − 20
cases in a retrieval set. Consequently for a single partition
we have only to remember all generalized cases having a
lower number of predecessors than the desired maximum
size of the retrieval set. This improvement reduces signifi-
cantly the size of information which should be saved with
every single partition. Therefore, we can produce a much
more detailed partition of the problem space and reduce
the online complexity. The reason for this significant
improvement is the fact that the cardinality-bound of a
retrieval set is usually lower than the size of the case base.

A further improvement can be achieved by using the

Figure 4: Partition with a decision tree

technic of decision trees. The problem space can be
partitioned recursively by choosing attributes and attribute
values and building new partitions with a border on the
chosen value. For every gained partition (cf. figure 4.)
similarity bounds to all generalized cases and a partial
order can be calculated. Based on this data the termination
criterion can be developed (e.g. size of non dropped cases,
degree of deviation of partial order from linear order and
so forth). The main algorithm schema for building of index
structure is as follows:

INPUT: Case Base CB, similarity measuresim

OUTPUT: A Retrieval Tree

1. create a root nodeR,
assign a whole problem spaceP to it,
assign all general casesCB to it.

2. select a leafL with assigned partitionPar
and assigned subsetSubCB ⊆ CB of cases,
STOP if termination criterion is valid.

3. select some attributeA of the regarded partition
Par.

4. select a cutting pointp on selected attributeA of
the selected partitionSD.
Condition: there is some pointt ∈ Par
having attribute valuetA = p.

5. create two constraintsA ≤ p andA > p.

6. create two new leafsL1 andL2,
assignPar1 = {t ∈ Par|tA ≤ p} to L1

andPar2 = {t ∈ Par|tA > p} to L2.

7. calculate∀GC ∈ SubCB:
Similaritymin(Par1, GC),
Similaritymax(Par1, GC),
Similaritymin(Par2, GC),
Similaritymax(Par2, GC).

8. based on the similarity bounds calculate the partial
order
O1 andO2 on generalized cases with respect to
Par1 andPar2.

9. for Par1: drop all cases having equal or more
predecessors as the maximum size of a retrieval set,
call the rest of generalized cases asSubCB1,
for Par2: drop all cases having equal or more
predecessors as the maximum size of a retrieval set,
call the rest of generalized cases asSubCB2.

10. assignSubCB1, O1 to L1 andSubCB2, O2 to L2,
delete the assignment ofSubCB to L.

11. set a nodeL as a predecessor ofL1 andL2.

12. GOTO 2

The result of this algorithm is a tree with leaves having
assigned significant cases and partial orders on them.
If a query arises in the online phase the partition which the
query hits can be effective acquired. We have to start with



a root node and then follow the path of partitions including
the query. The rest is an execution of linear retrieval of
cases assigned to an arrived leaf.

Computation of MAX/MAX and MIN/MAX-Problems
In the description of this approach we didn’t discuss a com-
putation of max/max and min/max problems. Although the
treatment of max/max problem is quite simple the treat-
ment of min/max problem is complex. We start with the
simple case first.
Remind of definition of upper similarity bound (15), the
max/max problem was given as follows:

max
s∈Par

max
g∈GC

sim(s, g) (16)

A partition Par and a generalized caseGC are both
located in the problem spaceP , i.e. Par ⊆ P and
GC ⊆ P . Regard a spaceP × P . Furthermore imagine
that the partitionPar is located in the first space of a
Cartesian product and the generalized caseGC in the
second space of a Cartesian product. The following
optimization problem in general form is then equivalent to
the max/max problem (16):

max
x

sim((x1, . . . , xn), (xn+1, . . . , x2n))
s.t. (x1, . . . , xn) ∈ Par,

(xn+1, . . . , x2n) ∈ GC,
x ∈ P2

(17)

The consequence is that the max/max problem can be for-
mulated as a common max problem in double dimensioned
space.
Since the max/max problem can be formulated as NLP or
MINLP, we mention again that this kind of problems can
be solved in majority of cases only approximately. In our
approach we choose an upper approximation. The reason
of this commitment is explained afterwards.
The treatment of the min/max problem is much more com-
plex. There is no literature found by authors handling this
problem in general. Although there is some work on han-
dling special min/max problems (e.g. in[Horst and Tuy,
1993]) this is not matching our case.
Our idea is not to solve this problem exactly but approxi-
mately by estimating a lower bound of the objective func-
tion. By estimating upper bound for max/max problem and
lower bound for min/max problem the index structure stays
consistent, i.e. no cases are excluded that belong to exact
retrieval set.
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Figure 5: Relaxation of uncertainty intervals

Figure 5 shows relaxed intervals of the uncertainty. We
can see that some intervals that didn’t overlap before are
overlapping now. This causes that the ordering between
the corresponding generalized cases is not valid more.
Furthermore, this relaxation doesn’t lead to new ordering
relationships, so no cases can be excluded, that wouldn’t
be excluded by exact calculation of bounds.
The simplest way to estimate a lower bound for min/max
problem is to solve min/min problem, since:

∀Par,GC ⊆ P :
min

s∈Par
min

g∈GC
sim(s, g) < min

s∈Par
max
g∈GC

sim(s, g)

(18)
The handling of the min/min problem is exactly the same as
the handling of the max/max problem. It can be formulated
as a common min problem in double dimensioned space.
The other possibility to estimate a lower bound for the
min/max problem by a known feasible pointc in the gener-
alized case is to calculate:

min
s∈Par

sim(s, c) (19)

Also here it holds:

∀Par,GC ⊆ P, c ∈ GC :
min

s∈Par
sim(s, c) < min

s∈Par
max
g∈GC

sim(s, g) (20)

In both cases the min problem has to be approximated
through the lower bound.

3.2 Kd-Tree Based Retrieval Method
In this subsection we describe, explain and discuss a
novel k-d tree-based retrieval techniques for case bases
consisting of traditional and generalized cases. The key
characteristic of this method is building the index structure
independent from the similarity measure.
The traditional k-d tree-based retrieval consists of two
major parts - building a k-d tree in the offline phase and
searching similar generalized cases using k-d tree in the
online phase. For the retrieval of generalized cases these
parts will be adapted and extended.

Building a k-d Tree
The algorithm in Table 1[Wesset al., 1993] builds the k-d
tree variant, named inreca tree, for common case bases.
The main algorithm for case bases consisting of common
and generalized cases stays the same. The difference oc-
curs in the functionPartition in decision if a case belongs to
some partition. This check is quite simple for point cases,
but not for generalized cases.
A generalized case belongs to some partition if and only if
their intersection is not empty. For generalized caseGC

represented throughGC =
n⋃

i=1

gi with gi closed connected

sets (generalized cases with mixed integer and continuous
domain) should be checked if there is somei ∈ [1, n] with
gi ∩ Partition 6= ∅.
The feasibility problem, that is, finding a point in the in-
tersection of finitely many closed convex sets in Euclidian
spaces, arises in various areas of mathematics and physical
sciences. It is well discovered and efficient to solve.
If some setgi is not convex it can be relaxed to a convex
set. The functionPartition can assign by this relaxation
some generalized case to a partition without really having
an intersection point. This inexactness doesn’t lead to fail-
ure by retrieval.



INPUT: Case Base CB

Output: An Inreca Tree

1. IF NOT Split?(CB) THENRETURNMakeBucket(CB)

2. ELSE

3. Discriminator := SelectAttribute(CB)

4. IF OrderedValueRange(Discriminator) THEN

5. Value := SelectValue(CB, Discriminator)

6. RETURNMakeInternalOrderedNode(Discriminator, Value,
CreateTree(Partition<(Discriminator, V alue, CB)),
CreateTree(Partition>(Discriminator, V alue, CB)),
CreateTree(Partition=(Discriminator, V alue, CB)),
CreateTree(Partitionunknown(Discriminator, V alue, CB)))

7. ELSE

8. RETURNMakeInternalUnorderedNode(Discriminator,
CreateTree(Partition1(Discriminator, CB)),...,
CreateTree(Partitionm(Discriminator, CB)),
CreateTree(Partitionunknown(Discriminator, CB)))

9. ENDIF

10. ENDIF

Table 1: Construction of the Inreca tree

Searching Similar Generalized Cases Using a k-d Tree
There are no great changes in the online phase. Since a case
base contains generalized and point cases,sim∗ should be
calculated instead ofsim in this part of the method. The
search algorithm, BOB and BWB tests stay the same.

4 Related Work
The idea of generalized cases was already implicitly pre-
sented since the very beginning of CBR and instance-based
learning research[Kolodner, 1980]. A more formal and
systematic view on generalized cases using constraints to
express the dependencies between several attributes was
presented in[Bergmannet al., 1999].
The first online retrieval approach for generalized cases
with continuous domain was presented in[Bergmann and
Vollrath, 1999]. The idea of this algorithm is to perform a
linear retrieval without solving an assessment problem ex-
actly. Upper and lower bounds are calculated for a query
and all cases from a case base. Based on similarity bounds
similar cases to the query can be found, but not the most
similar cases in general.
In [Mougouie and Bergmann, 1999] an extended online re-
trieval approach for generalized cases with continuous do-
main is presented. This approach is based on techniques
of mathematical optimization. Similar to the first approach
the idea is to estimate the bounds. In contrast these bounds
can be refined in order to gain the exact set of the best
neighbours.
We introduced in[Maximini et al., 2003] the first index
based method for generalized cases with mixed continuous

and discrete domain. The idea of this approach is to trans-
form generalized cases through sampling into point cases
to use well researched and fast retrieval engines.

5 Summary and Outlook

The both facts that on the one hand the similarity assess-
ment problem for generalized cases can be formulated as
an optimization problem and on the other hand mathe-
matical optimization problems belong to a research field
since many years in mathematics lead to an investigation
optimization-based assessment and retrieval methods.
In this paper we introduced for the first time the formu-
lation of a similarity assessment problem for generalized
cases with mixed continuous and discrete domains as a spe-
cial optimization problem MINLP. Furthermore, we intro-
duced two optimization-based retrieval methods building
the index structure in the offline phase. The first retrieval
method takes into account the similarity measure by build-
ing an index structure. We hope that this method will work
efficient in the online phase. The second one is more flex-
ible, since it is independent from similarity measure. We
expect a lower efficiency. The next research point is a real-
ization and evaluation of these concepts.
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