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Abstract

Boosting has established itself as a successful
technique for decreasing the generalization
error of classification learners by basing pre-
dictions on ensembles of hypotheses. While
previous research has shown that this tech-
nique can be made to work efficiently even
in the context of multirelational learning by
using simple learners and active feature se-
lection, such approaches have relied on sim-
ple and static methods of determining fea-
ture selection ordering a priori and adding
features only in a forward manner. In this
paper, we investigate whether the distribu-
tional information present in boosting can
usefully be exploited in the course of learning
to reweight features and in fact even to dy-
namically adapt the feature set by adding the
currently most relevant features and remov-
ing those that are no longer needed. Prelim-
inary results show that these more informed
feature set evolution strategies surprisingly
have mixed effects on the number of features
ultimately used in the ensemble, and on the
resulting classification accuracy.

1 Introduction

Boosting is a well established method for decreas-
ing the generalization error of classification learn-
ers and has been developed into practical algorithms
that have demonstrated superior performance on a
broad range of application problems in both propo-
sitional and multi-relational domains ([4; 13; 3; 12;
8]). Instead of searching for one highly accurate pre-
diction rule entirely covering a given set of training
examples, boosting algorithms construct ensembles of
specialized rules by repeatedly calling a base learner
on reweighted versions of the training data. Predic-
tions are based on a combination of all members of
the learned ensemble.

Previous work showed that this technique can be ef-
ficient even in the context of multirelational learning
using simple learners and active feature selection [8;
7]. Active feature selection can be embedded into a
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boosting framework at virtually no extra cost by ex-
ploiting the characteristics of boosting itself to actively
determine the set of features that is being used in the
various iterations of the boosted learner [7]. By moni-
toring the progress of learning, and incrementally pre-
senting features to the learner only if this appears to
be necessary for further learning, we arrive at smaller
feature sets and significantly reduced induction times
without a deterioration of predictive accuracy.

The abovementioned positive effects on feature set
size and induction time were achieved with extremely
simple and uninformed selection strategies. In the ap-
proach introduced in [7] , feature weights were deter-
mined once at the beginning on the initially uniform
example distribution, and no attempt was made to re-
move features that might have become irrelevant dur-
ing the course of boosting due to the changes in the
underlying example distribution.

In this paper, we therefore investigate whether
learning results can be further improved by employ-
ing the distributional information present in boosting
to reweight features and to dynamically adapt the fea-
ture set. In addition, we explore the effect of establish-
ing new feature orders based on considering different
sorting criteria as well as different subsets of features
and examples. A number of different strategies to fea-
ture subset evolution are looked at and evaluated on
several multirelational domains. Interestingly, the em-
pirical evaluation shows that more informed feature
selection strategies have mixed effects on the size of
feature sets and classification accuracy, indicating that
the increase in the power of the weak learner achieved
by making better feature sets available might be offset
by the induction of mutually contradictory base hy-
potheses produced by features that are very specific to
extremal distributions towards the end of the boosting
process.

This paper is organized as follows. In Section 2, we
review constrained con-fidence-rated boosting. Sec-
tion 3 provides an overview of the simple uninformed
approach to active feature selection in the framework
of constrained confidence-rated boosting. In section
4, we present our approach to feature set evolution
strategies for multirelational boosting. Our experi-
mental evaluation of the approach is described and
discussed in Section 5. In Section 6, we conclude with
some pointers to future work.



2 Constrained Confidence-Rated
ILP-Boosting

Boosting has emerged as a successful method for im-
proving the predictive accuracy of a learning system by
combining a set of base classifiers constructed by itera-
tive calls to a base learner into one single hypothesis [4;
13; 3; 12; 8]. The idea is to “boost” a weak learner per-
forming only slightly better than random guessing into
an arbitrarily accurate learner by constructing an en-
semble of base hypotheses and combining them into
one final hypothesis.

To this end, a base learner is repeatedly called on
reweighted versions of a set E of training instances.
In each round t of boosting, a probability distribution
Dt over E is maintained which models the weight Dt

i
associated with each training example ei in the t-th
iteration. Dt

i indicates the influence of an instance
when constructing a base classifier ht. Initially, all in-
stances have equal influence on the construction of a
base hypothesis, i.e. the probability distribution D1

is uniform. In each iterative call t to the base learner,
a base hypothesis ht is learned based on E weighted
according to the current distribution Dt over E, and
used to update the distribution for the next iteration.
The weights of misclassified instances are increased
while the weights of correctly classified instances are
decreased, in order to focus on the examples which
have not yet been correctly classified. Finally, all base
hypotheses learned are combined into one final hy-
pothesis H by a weighted majority vote of the base
hypotheses.

In [8], we extended a specific approach to boosting
known as constrained confidence-rated boosting, first
introduced in [3], to multirelational problems. Com-
bined with an appropriate refinement operator and
search heuristics, constrained confidence-rated boost-
ing is an effective approach to producing highly ac-
curate multi-relational models while at the same time
ensuring limited complexity of the final ensemble and
acceptable induction times, as shown in [8] with the
system C2RIB (Constrained Confidence-Rated ILP
Boosting).

Since for the active feature selection strategies de-
veloped and evaluated in this paper, we have chosen
C2RIB as the basic algorithm and point of reference,
we provide a summary of the algorithm below; for
more details, the reader is referred to [8].

C2RIB accepts as input the total number of itera-
tions of the base learner, and a set E = {(x1, y1), · · · ,
(xN , yN)} of positive training examples (xi, 1) and
negative training examples (xi,−1), where each xi

belongs to an instance space X . Additionally, back-
ground knowledge may be provided.

In each iterative call t of the base learner, a base
hypothesis ht is learned on E, based on the current
distribution Dt. In the framework of confidence-rated
boosting, the prediction of a base hypothesis ht is
confidence-rated. A prediction confidence c(ht, E) is
assigned to each base hypothesis ht. The sign of
c(ht, E) indicates the label predicted by ht to be as-
signed to an instance, whereas the absolute value of
c(ht, E) is interpreted as the confidence in ht’s pre-
diction. This prediction confidence is used to update
Dt for the next iteration, and as ht’s vote in the final
hypothesis H .

The constrained form of confidence-rated boosting
which we apply here is such that the base learner is re-
stricted to induce only hypotheses predicting the pos-
itive class with a positive prediction confidence for all
examples covered by the hypothesis, and to abstain
on all examples not covered by it. Additionally, the so
called default hypothesis is admissible, just comprising
the target predicate to be learned and satisfying all
examples. The confidence assigned to the default hy-
pothesis conforms to the sign of the class of examples
with the largest sum of probabilities according to the
current distribution Dt. This weighted majority class
may change over the course of iterations, depending
on the learned base hypotheses and thus the examples
on which the learner is currently focusing.

The prediction confidence of the current base hy-
pothesis is used to update the current probability dis-
tribution Dt such that misclassified instances will have
higher weights in the next iteration of the learner. Af-
ter the last iteration of the base learner, the final,
strong, hypothesis is derived from all base hypothe-
ses induced from the training instances. To classify an
instance x the prediction confidences of all hypotheses
ht covering x are summed up. If this sum is positive,
the strong hypothesis H classifies x as positive, other-
wise x is classified as negative.

3 Simple Baseline Strategy of Active
Feature Selection

Efficiency and effectiveness of learning crucially de-
pend on the representation of the objects that are used
for learning. The inclusion of unnecessary features or,
in a multirelational setting, of unnecessary relations,
makes learning less efficient and often less effective.
Feature selection therefore is a central topic in ma-
chine learning research. Using a very simple strategy,
it is possible to exploit the characteristics of boosting
in order to perform active feature selection, resulting
in lower induction times and reduced complexity of the
ensemble [7]. Since boosting tries to increase the cer-
tainty with which examples are classified by the ensem-
ble of hypotheses — this is expressed in terms of the
so-called margin —, as shown in [7], one can monitor
the development of the margin in order to determine
when new features or relations might be needed.

The approach presented in [7] has used quite a sim-
ple strategy which we will use as a baseline for com-
parison of the more advanced and informed strategies
we develop and evaluate in this paper. The algorithm
C2RIBD described in [7] simply orders the available
features in the different relations based on a heuris-
tic relevance measure (mutual information). Boosting
is started with a minimal set of features, and pro-
ceeds until the development of the margin indicates
that progress is slowing down at which moment the
next feature on the list is added to the representation.
In more detail, when integrated into the algorithm of
C2RIB described in section 2, the simple baseline ac-
tive feature selection strategy works as described in
the following (for a complete description see [7]).

C2RIBD accepts as input, in addition to the input
of C2RIB, the set F of features present in the train-
ing examples, sorted in descending order according to
some criterion, and a subset F ′ of the top most fea-
tures of F .



In order to actively select features depending on the
requirements of the problem, and thus accelerate the
learning process of the boosted learner C2RIB with-
out a deterioration of its prediction accuracy, we start
the learner with the features in F ′ and the relations
in which these features occur, monitor the learning
progress and include additional features and relations
into the learning process only by demand.

The learning progress is monitored in terms of the
development of the training examples’ mean margins.
The margin of an example ei = (xi, yi) under an en-
semble Ht of base classifiers h1, h2, · · · , ht is a real-
valued number margin(Ht, ei) ∈ [−1, 1] indicating the
amount of disagreement of the classifiers in Ht with re-
spect to ei’s class. For the binary case we deal with
here, we can define the margin of ei under Ht as the
difference between the sum of the absolute weights of
those base classifiers in Ht predicting for ei its correct
class yi, and the sum of the absolute weights of those
base classifiers in Ht predicting for ei the incorrect
class y �= yi [7].

Large positive margins indicate a “confident” cor-
rect classification. The more negative a margin is,
the more confident an incorrect classification is indi-
cated. Boosting is known to be especially effective at
increasing the margins of the training examples [15;
5]. By increasing their probabilities, boosting forces
the focus on misclassified instances which show small
or even negative margins. The learner is forced to
search for base hypotheses which correctly classify
these hard examples and thus increase their margins.
Since the margins are increasing in the course of it-
erated calls to the base learner, the gradient of the
mean margins can be assumed to be positive and be
employed to monitor the quality of the learning pro-
cess.

For monitoring the learning success, we define in
each iteration t of boosting the gradient gradient(t) of
t as the slope of the line determined by the least square
fit to the average margins in each single iteration 1
to t. We then average the gradients over the last Tl

iterations as to smooth temporary fluctuations in the
margins’ development, and compute the ratio of the
averaged previous gradients and the current gradient.

The margins’ improvement is measured by this ratio
which increases from one iteration to the next as long
as the margins increase significantly. As soon as the
ratio starts to decrease, an estimate for the slowdown
in the margins’ improvements is determined. This es-
timate predicts the expected decrease of the ratio and
is used to determine when a new feature has to be pre-
sented to the learner. Whenever the actual decrease of
the ratio exceeds the predicted decrease by a certain
threshold α, a new feature is included into the learning
process.

4 Feature Set Evolution Strategies for
Multirelational Boosting

We investigate whether more complex strategies of fea-
ture ordering and selection can further improve the
learning results. Instead of relying on the sequence
that has been initially determined on the entire train-
ing set based on the features’ mutual information
with the class, a new feature order is established, by
reweighting features based on the current distribution

over the training examples, every time a feature is re-
quested by the base learner. Such a new feature order
can be arrived at by considering:

• the entire training set for feature reweighting, or
only the fraction of examples which are misclassi-
fied by the current ensemble of base hypotheses;

• the entire original feature set or just the features
which have not been presented to the learner yet;

• not only the mutual information of a feature with
the class but also the conditional mutual informa-
tion of a feature with the class, given the values
of other features.

Moreover, features can be simply presented incremen-
tally to the learner or, alternatively, features that are
no longer needed can be substituted by the currently
most relevant features.

Based on these considerations, we investigate sev-
eral approaches to feature ordering and selection. In
the following, we discuss the properties with respect
to which we categorize the different strategies summa-
rized in Table 1.

• Considered features (column 3 of Table 1): Each
ensemble member is specialized on a certain re-
gion of the instance space. As the distribution
over the examples changes, the required special
knowledge might shift. We consider the question
whether prediction accuracy can be improved by
dismissing features that no longer meet the very
current requirements of the learning task.

• Considered examples (column 4 of Table 1): Since
one of boosting’s basic principle is to focus the
base learner on examples which are misclassified
by the current ensemble, we consider the question
whether predictive accuracy can be improved by
presenting to the base learner features which are
especially helpful to correctly classify the exam-
ples which have been misclassified so far.

• Sorting criterion (column 5 of Table 1): In ad-
dition to the mutual information of each sin-
gle feature with the class we compute the fea-
tures’ conditional mutual information (CMI) with
the class, given another feature, to investigate
whether learning results can be improved by con-
sidering groups of features which optimally sep-
arate the given examples. The conditional mu-
tual information between feature Fk and class C,
given feature Fj , reflects the amount of informa-
tion about the class that is obtained when the
values of features Fj and Fk are known:

CMI(C, Fk|Fj) = E(C) − E(C|Fk, Fj),

where E(C) and E(C|Fk, Fj) denote the entropy
and the conditional entropy, respectively, of C.

• Set evolution strategy (column 6 of Table 1): We
consider the question whether we can improve
prediction accuracy by substituting features that
are no longer needed by currently most relevant
features instead of augmenting the set of features
to be considered for refinement.

• Partitioning continuous features (last column of
Table 1): We investigate whether learning results



can be improved by discretizing continuous fea-
tures in a way that reflects the current distri-
bution over the training examples. To this end,
we apply an objective function of the constrained
confidence-rated boosting framework (cf. [8]) to
partition the continuous range of a feature F such
that the training examples are optimally sepa-
rated by F according to the current distribution.

It is common to all approaches V1 to V16 that, ex-
actly as in the baseline strategy C2RIBD, the avail-
able features in the different relations are initially or-
dered based on the heuristic relevance measure of mu-
tual information, and that the learner starts with the
top two features according to this order. In contrast to
the baseline method, every time a feature is requested
by the learner, a new feature order is determined based
on the current distribution.

In all versions, except group I (V1 and V2), the value
ranges of continuous features are partitioned based on
the current distributional information and the boost-
ing objective function (cf. [8]).

The versions in group I to III compute the features’
mutual information with the class. V1 to V4 consider
only those features which have not been presented to
the learner yet, and augment the set of currently ac-
tive features with the top feature of the new sequence.
One version considers all examples for reweighting, the
other one considers only those which are misclassified
by the current ensemble. V5 and V6 consider the en-
tire feature set for reweighting, substitute the features
already presented to the learner with the same num-
ber of top features from the new sequence, and ac-
tivate one additional top feature of the new ranking.
Again, one version considers all examples for reweight-
ing, the other one considers the misclassified ones only.
V7 and V8 (group III) determine, based on all exam-
ples and the misclassified ones only, respectively, a new
sequence of all features and substitute the worst ac-
tive feature with the top feature of the new sequence.
Thus, only two features are active at a time.

In V9 to V12 (group IV), the feature with the
highest conditional mutual information with the class,
given the feature which was last activated, is presented
to the learner in an incremental manner. Versions V9
to V12 account for all possible combinations of features
and examples to be considered for reweighting.

In V13 to V16 (group V), the set of currently active
features is substituted by the feature F with the high-
est mutual information with the class, and the feature
with the highest conditional mutual information with
the class, given F , again accounting for all possible
combinations of features and examples to be consid-
ered for reweighting. Only two features are active at
a time.

5 Empirical Evaluation

5.1 Experimental Design
We evaluated the different feature set evolution strate-
gies on a total of six learning problems: two clas-
sical ILP domains, Mutagenicity [17] (prediction of
mutagenic activity of 188 molecules (description B4))
and QSARs, Quantitative Structure Activity Relation-
ships, [10; 9] (prediction of a greater-activity relation-
ship between pairs of compounds based on their struc-

ture), one artificial problem, the Eastbound Trains1
proposed by Ryszard Michalski (prediction of trains’
directions based on their properties), and three gen-
eral knowledge and data mining tasks, Task A and
AC of the PKDD Discovery Challenge 2000 [1] (classi-
fication of loans, where Task AC is based on all loans,
and Task A only on the closed loans from Task AC),
and Task 2 of the KDD Cup 2001 [2] (prediction of
gene functions).

The standard version C2RIBD and each of the ver-
sions described in Section 4 is run with T = 50 it-
erations of the base learner. In all experiments, the
threshold α – which the deviation between the actual
decrease of the learning curve and its predicted de-
crease is not allowed to exceed – is set to 1.01. The
value 1.01 has been empirically determined on the do-
main of Mutagenicity [17], and has not been modified
for subsequent experiments on the other domains in
order to ensure proper cross validation results.

Since we expected more informed feature set evo-
lution strategies to result in more extreme learning
curves, we decided to average the gradients of the ex-
amples’ mean margin over a smaller number Tl of it-
erations than in earlier experiments, where we used
Tl = 10. To ensure a fair comparison of the uninformed
approach and the new strategies, we compared the re-
sults of the base case C2RIBD with Tl = 10 against
a new value Tl = 3. In two thirds of our domains,
Tl = 3 resulted in a, to some extent rather large, de-
terioration of classification accuracy, in one third only
to very slight improvements. Similarly, we compared
for one of the informed feature selection strategies on
one of the domains the learning curves with Tl = 3
and Tl = 10. As expected, the learning curve initially
increased significantly stronger and later dropped sig-
nificantly slower when using a more complex feature
ordering and selection strategy. This had the effect
that, with Tl = 10, the learning curve’s estimate was
lower than the learning curve itself, and consequently
no additional features were requested by the learner.
Reducing the number of iterations over which the gra-
dients of the examples’ mean margins are averaged to
Tl = 3 has the effect that the different development of
the learning curve can be better estimated and thus
features are introduced into the learning process over
the course of iterations. Thus, the gradients of the ex-
amples’ mean margins are averaged for the standard
version C2RIBD over the last Tl = 10, and for the
more complex feature set evolution strategies over the
last Tl = 3 iterations.

5.2 Detailed Results and Discussion

The resulting predictive accuracies and the average
number of features required by the learner are de-
picted in Table 2 together with the standard devia-
tions. The predictive accuracy is estimated by 10-fold-
cross validation with the exception of the QSARs do-
main, where 5-fold-cross validation is used, and the
Eastbound Trains, where the data is split into one
training and test set partition, and the results are av-
eraged over 10 iterations of the experiment.

1The examples were generated with the Ran-
dom Train Generator available at http://www-users-cs-
york.ac.uk/∼stephen/progol.html



Table 1: Strategies to feature ordering and selection based on the distributional information present in boosting.
The strategies differ with respect to the features and examples, respectively, considered for establishing a new
feature order, the applied sorting criterion, the set evolution strategy, and the discretization strategy for contin-
uous features. The n in Set Evolution Strategy “Substitute n” denotes the number of features already presented
to the learner.

Group � Version � Considered Considered Sorting Set Partitioning

Features Examples Criterion Evolution Continuous

Strategy Features

I V1 Remaining All MI Add 1 N

V2 Remaining Misclassified MI Add 1 N

II V3 Remaining All MI Add 1 Y

V4 Remaining Misclassified MI Add 1 Y

V5 All All MI Substitute n,

Add 1 Y

V6 All Misclassified MI Substitute n,

Add 1 Y

III V7 All All MI Substitute 1 Y

V8 All Misclassified MI Substitute 1 Y

IV V9 Remaining All CMI Add 1 Y

V10 Remaining Misclassified CMI Add 1 Y

V11 All All CMI Add 1 Y

V12 All Misclassified CMI Add 1 Y

V V13 Remaining All CMI Substitute 2 Y

V14 Remaining Misclassified CMI Substitute 2 Y

V15 All All CMI Substitute 2 Y

V16 All Misclassified CMI Substitute 2 Y

The results indicate on the one hand that further
improvements can indeed be achieved by using more
complex approaches to feature ordering and selection.
On the other hand, they clearly show that it has to
be considered very carefully which strategy to apply.
Combining, for example, substitution of features with
reordering all features and applying the CMI criterion
(as in V15 and V16), seems to lead to inferior results.
The dynamics inherent to boosting already cause the
underlying learner to direct its attention on the diffi-
cult, or extreme, instances. Strategies overly intensi-
fying the focus in this direction most probably tend to
misleadingly lay emphasis on a few extreme examples
which leads to inferior results. We will detail on this
issue in more depth after a thorough discussion of the
single strategies’ results summarized in Table 2. We
base our discussion of the strategies’ performance on
their win-loss-tie record in comparison to the baseline
strategy C2RIBD. Then, possible explanations will
be discussed in the context of all results.

The entries of groups I to III in the upper half
of Table 1 which all apply the MI criterion show an
increased prediction confidence over the base case,
C2RIBD, in all but one cases. This is especially sur-
prising for the versions V1 and V2 (group I), since
they apply a simple reordering of the features not yet
presented to the learner based on the examples’ cur-
rent weights, without prior partitioning the continuous
features’ value ranges. Both strategies add the best
feature with respect to the new ranking, and yield a
better accuracy than and feature subsets of about the
same size as C2RIBD. V2 – using only the weights
of misclassified examples to establish a new ranking –
clearly outperforms V1 – considering all examples for
reweighting – with respect to classification accuracy.

Versions V3 and V4 of group II differ from V1 and
V2 in terms of continuous features which are dis-
cretized based on the current distribution over the
training set. Both strategies are superior to C2RIBD

with respect to classification accuracy, and yield – with
one exception – feature subsets of about the same size
as or slightly smaller than C2RIBD. Again, the ver-
sion considering the misclassified examples only (V4)
is superior to the one considering all examples (V3).

For versions V5 and V6 of group II – considering the
entire feature set to establish a new feature ranking,
substituting all active features with the same number
of currently most relevant features and adding one ad-
ditional feature – the number of features required by
the learner is larger than for the base case in one third,
and smaller in one fifth of the cases. Again, consider-
ing misclassified examples only for reweighting yields
the better results. V5 considers the entire training set,
and its prediction confidence is inferior to that of the
base case. In contrast, V6 – using only the weights of
misclassified examples to establish a new ranking – is
clearly superior to C2RIBD.

An opposite effect can be observed in group III (ver-
sions V7 and V8), where all features are considered for
a new ranking, and only two features are active at a
time. Every time a new order has been determined,
the worst active feature is substituted with the top
feature of the new sequence. Here, the version con-
sidering the entire training set for reweighting (V7) is
superior to the case where only the weights of mis-
classified examples are used to establish a new feature
order (V8). In both cases, the classification accuracy
is better, but the number of requested features is pre-
dominantly larger than for the base case.

All versions of groups IV and V in Table 1 are based



Table 2: Accuracy ± standard deviation, and number of requested features ± standard deviation after 50
iterations for C2RIBD and the feature set evolution strategies V1 to V16 on several multirelational domains

V � KDD01 Mutagenicity PKDD-A PKDD-C QSARs Trains
CRIBD 90.15 83.50 86.70 88.57 78.76 80.00

±7.92 ±5.80 ±6.64 ±2.95 ±1.76 ±15.32
5.5±3.4 4.4±2.0 5.5±1.8 6.3±1.8 3.4±1.5 5.9±1.9

I V1 91.58 80.87 86.70 88.87 81.37 78.33
±6.32 ±9.94 ±6.64 ±3.35 ±2.03 ±8.05

6.6±2.2 4.2±1.6 6.9±2.6 5.7±2.6 3.3±1.5 5.8±1.4
V2 90.33 85.60 86.70 88.87 80.77 81.67

±7.73 ±4.45 ±6.64 ±3.35 ±2.93 ±16.57
5.4±3.9 7.4±1.2 6.1±2.5 8.6±3.0 2.3±0.5 5.7±1.2

II V3 90.29 85.67 86.70 88.72 81.51 86.67
±7.44 ±6.03 ±6.64 ±3.12 ±2.39 ±10.54

2.5±1.1 5.4±1.4 6.6±1.8 7.0±2.3 4.0±0.0 5.8±1.1
V4 90.57 86.19 86.70 88.87 80.96 83.33

±7.32 ±5.01 ±6.64 ±3.35 ±3.45 ±11.11
3.5±2.3 4.9±1.7 5.9±2.6 5.7±4.1 6.0±2.8 6.6±1.0

V5 90.12 86.72 86.70 88.87 77.45 73.33
±7.99 ±6.64 ±6.64 ±3.35 ±3.09 ±11.65

3.7±4.0 5.6±1.8 7.1±2.6 8.4±2.0 5.0±1.4 6.1±1.2
V6 89.87 87.77 86.70 88.87 80.13 88.33

±8.53 ±6.08 ±6.64 ±3.35 ±3.19 ±13.72
2.4±0.9 5.2±1.8 7.3±1.9 8.9±1.0 3.5±0.6 6.0±0.7

III V7 90.73 85.14 86.70 88.87 78.14 81.67
±7.13 ±8.20 ±6.64 ±3.35 ±5.63 ±9.46

2.9±1.9 5.8±2.2 6.9±3.0 7.9±3.3 6.2±4.7 7.5±3.4
V8 89.95 85.60 86.70 88.87 76.73 85.0

±8.34 ±9.99 ±6.64 ±3.35 ±4.21 ±14.59
2.2±0.6 7.4±2.2 8.5±3.2 8.0±3.5 4.4±1.3 6.3±2.0

IV V9 90.61 82.51 86.23 87.46 78.93 81.67
±6.40 ±7.35 ±6.76 ±2.73 ±4.77 ±9.46

2.4±1.1 4.2±1.7 2.9±1.7 8.7±1.3 2.8±1.0 5.8±1.5
V10 90.65 88.55 82.88 88.65 80.43 81.67

±6.26 ±7.07 ±7.25 ±2.78 ±2.61 ±9.46
2.5±1.1 5.7±2.2 2.0±0.0 5.8±2.5 5.5±0.7 6.2±0.8

V11 90.75 84.55 86.19 88.72 79.03 78.33
±6.24 ±6.35 ±7.5 ±3.2 ±2.56 ±11.25

2.2±0.4 3.5±0.7 2.9±1.2 4.6±2.0 2.8±0.8 4.0±0.0
V12 90.31 82.38 85.72 88.97 78.24 78.33

±6.61 ±8.03 ±7.67 ±3.19 ±2.02 ±8.05
2.2±0.4 4.5±1.1 2.0±0.0 3.3±2.2 3.0±0.7 3.4±0.5

V V13 91.12 86.19 82.46 88.43 72.77 80.0
±6.28 ±6.12 ±6.74 ± 2.99 ±2.47 ±10.54

3.85±2.9 9.6± 4.5 10.8± 7.2 11.0±7.7 4.4±2.2 12.4±4.2
V14 90.53 86.29 87.02 86.14 72.75 76.67

±6.38 ±5.04 ±7.64 ±2.48 ±2.38 ±2.61
2.8±2.2 10.0±3.7 2± 0.0 5.5±7.0 4.8±3.4 9.2±3.9

V15 89.93 82.38 85.83 88.13 72.64 73.33
±6.71 ±8.03 ±7.16 ±2.66 ±2.33 ±11.65

2.6±1.3 6.4±3.4 6.6± 5.3 13.0±6.9 2.4±0.9 6.8±2.4
V16 90.62 82.83 84.18 86.85 72.81 75.0

±6.18 ±6.31 ±9.2 ±4.29 ±2.35 ±11.79
2.9±1.8 8.2±3.7 2.7±1.2 2.0±0.0 6.8±5.6 10.2±5.1



on the CMI criterion. The results show that some
of the strategies (V10 and V11) clearly outperform
the baseline strategy C2RIBD both in terms of pre-
dictive accuracy and reduction of the number of fea-
tures required by the learner. The remaining versions,
however, not only do not yield any improvements but
mostly deteriorate the learning results in all respects.

In all versions of group IV (V9 to V12), the fea-
tures are presented to the learner in a forward man-
ner, and they all arrive at a smaller number of features
requested for learning than the base case. V9 and V10
consider only the remaining features to determine a
new feature order. Again, the version considering only
the weights of the misclassified examples (V10) is su-
perior to the version using the weights of all exam-
ples (V9). V10 clearly outperforms C2RIBD with re-
spect to accuracy, V9 is on par with the base case. In
both versions, the number of features requested by the
learner is smaller than or on par with the base case.

In V11 and V12, all features are reordered every
time a new feature is requested. As for V7 and V8,
considering only the misclassified examples is inferior
to considering all examples. V11 clearly outperforms
the base case both in terms of accuracy and number of
required features. V12 requires smaller feature subsets
than C2RIBD but yields a lower classification accura-
cies.

In the versions of group V (V13 to V16), only 2
features are active at at a time, namely the feature
F with the currently highest mutual information with
the class, and the feature with the currently highest
conditional mutual information with the class, given
F . None of these versions yields any improvement
with respect to the base case. V14 is on par with
C2RIBD with respect to both accuracy and number
of features required for learning. However, the remain-
ing three strategies are clearly inferior to the base case
in all respects. Again, the versions only considering
the weights of misclassified examples (V14, V16) yield
better results than the strategies using the weights of
all examples (V13, V15).

These detailed results indicate, that the strategies
establishing a new order for those features only which
have not been presented to the learner yet, based on
the weights of misclassified examples only, and adding
the currently best feature to the set of active features
(V2, V4, V10) are the most successful strategies, and
are clearly superior to the base case. Applying the
relevance measure of mutual information of a feature
with the class (V2, V4) seems to outperform the use
of the CMI measure (V10).

The strategy yielding the – by far – worst results
is the combination of considering all features for re-
ordering, all examples for weighting, substitution of
the only two active features with the currently best
two features, and the relevance measure of CMI (V15).
V15 is, with respect to predictive accuracy, inferior to
C2RIBD on all six domains, and requires more fea-
tures in two thirds of the domains. V5, the only MI
based strategy (groups I to III) which performs worse
than the uninformed baseline strategy C2RIBD, com-
bines exactly the means which lead to the worst re-
sults in the CMI groups (IV and V). Thus, one can
conjecture that this combination should be avoided.
The comparatively good classification accuracy of V7

seems to contradict this conjecture. However, V7 re-
sults in all but one cases in a larger number of features
required by the learner which might indicate that the
selected features are not optimal.

Version V11 differs from the worst strategy, V15,
only with respect to the set evolution strategy but
yields both higher classification accuracy and smaller
feature subsets than C2RIBD. This provides us with
an idea about how “extreme” the single strategies
are. We can interpret the “all features, all exam-
ples, substitute”-strategy (AAS) as the most extreme
method. AAS completely deprives the learner of its
current equipment and very strongly directs the focus
to the present situation. The classification accuracy
deteriorates and the number of features required for
learning increases as a result to an insufficient equip-
ment of the learner.

When instead the best feature is added to the cur-
rent equipment, the learner concentrates much less on
just the current state, and it becomes less likely that
the learner only focuses on a few extreme, or mislead-
ing, examples. The “remaining features, misclassified
examples, add”-strategy (RMA) which yields the best
results in our experiments can be interpreted as the
less extreme method. RMA is a fairly cautious strat-
egy and does not further intensify the dynamics inher-
ent to boosting. Not only is the prediction accuracy
higher but the number of features requested from the
learner is also smaller. The request of a large number
of features is most likely due to situations where new
features are selected based on misleading information.
These features seem to be more promising than they
really are. Since the chosen equipment is inadequate,
the learner soon tries to level out the insufficiency by
requesting yet another feature.

5.3 Summary and Implications

As a bottom line, we can see that positive effects on the
classification accuracy and the number of features ul-
timately used for learning can be achieved by applying
more informed feature selection strategies which uti-
lize the distributional information provided by boost-
ing without overly intensifying the dynamics inherent
to boosting. The most successful strategies are those
which add in a forward manner from the set of fea-
tures not yet presented to the learner the one that
scores best on the misclassified examples with respect
to the MI relevance measure. Strategies which further
intensify the dynamics of boosting, i.e. which result in
a even stronger focus on only a few extreme examples,
should be avoided since they lead to a clear deteriora-
tion of the results.

One could presume that this deterioration stems
from an overfitting effect. However, since C2RIBD

employs an effective overfitting avoidance strategy, we
rather conjecture that learning is inhibited by focusing
too much on features that are very specific to extremal
distributions over the training data. Preliminary anal-
ysis of the base hypotheses’ prediction confidences and
the training examples’ mean margins over the course
of iterations rather indicates that the selection of fea-
tures which are significant only for a very small frac-
tion E′ of “extreme” training examples results in the
construction of a base hypothesis so unrepresentative
for the entire training data, that it is right away leveled



out by the regularization mechanisms of the boosting
algorithm. In the next iteration, a contrary base hy-
pothesis is induced which in turn, forces the learner
to concentrate again on E′, and to repeat the same
process, or to request that a new feature order be es-
tablished. Thus, the learner seems to eventually come
to a point where further learning is inhibited.

6 Conclusion

In this paper, we have investigated informed ap-
proaches to feature ordering and selection in the
framework of active feature selection and constrained
confidence-rated multirelational boosting. Active fea-
ture selection can be embedded into a boosting frame-
work at virtually no extra cost by exploiting the char-
acteristics of boosting itself to actively determine the
set of features that is being used in the various iter-
ations of the boosted learner [7]. By monitoring the
progress of learning, and incrementally presenting fea-
tures to the learner only if this appears to be necessary
for further learning, one can, even with a simple unin-
formed approach to feature ordering and selection, ar-
rive at a smaller feature set, and significantly reduced
induction times without a deterioration of predictive
accuracy.

Here, we investigated whether classification accu-
racy and the number of features used in the learn-
ing process can be further improved by making use of
the distributional information present in boosting to
reweight features and to dynamically adapt the feature
set. In addition, we explored the effect of establishing
new feature orders based on considering different sort-
ing criteria as well as different subsets of features and
examples.

The empirical evaluation of several different strate-
gies to feature subset evolution on a number of mul-
tirelational domains shows that more informed feature
selection strategies have mixed effects on the size of
feature sets and classification accuracy. Prediction ac-
curacy can be improved by utilizing the distribution
over the training examples maintained by boosting, for
example in combination with the heuristic relevance
measure of mutual information. Positive effects on the
classification accuracy and the number of features ul-
timately used for learning can be achieved with the
relevance measure of conditional mutual information,
whereby the features and examples used for reorder-
ing and reweighting, respectively, have to be carefully
considered in order to avoid the selection of features
which are only significant for very few examples and
misleading for the overall learning process.

As a next step, the dynamics in boosting which lead
to the induction of mutually contradictory base hy-
potheses in the presence of powerful feature subsets
have to be thoroughly investigated. Moreover, other
relevance measures and approaches to feature selection
will be investigated.

We would like to thank Jörg Kaduk for valuable
discussions and helpful comments on previous versions
of this paper.
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