An Agent-Based Workflow Management System

Krzysztof Palacz and Dan C. Marinescu
Computer Sciences Department
Purdue University,
West Lafayette, IN, 47907
email: {palacz,dcm}@cs.purdue.edu

Abstract

In this paper we discuss the architecture of an agent—
based workflow management system built around the
Bond agent framework. We address the problem of
mapping a workflow description into the Blueprint lan-
guage used for agent description. Bond agents can
be modified dynamically by changing the data struc-
ture controlling the scheduling of actions in the multi-
plane state machine model of the agent. The modified
blueprints can be generated after the surgery of an a-
gent. From the modified blueprint we can create the
modified workflow description and complete the cycle
supporting dynamic workflows.

Contents

Introduction

Workflow systems are designed to automate complex
activities consisting of many dependent tasks. Work-
flow management systems, WFMS, are widely used to
automate business processes (Alonzo et al. 1997), and
there is growing interest in their application to data-
intensive scientific and engineering problems (Wainer
et al. 1996). There is ample evidence that the business
use of workflows increases productivity and improves
the quality of the products of an organization and we
should expect similar benefits for scientific and engi-
neering applications, e. g. for tasks that involve data
collected from many sites and intricate computations
to extract useful information from the data.
Business-oriented workflow management systems,
can be used for (Alonzo et al. 1997): (a) administra-
tive tasks involving well established sequences of steps
e.g. publishing books in a publishing house, (b) ad-
hoc tasks with frequent occurrences of exceptions e. g.
preparing books for publication by an individual au-
thor (various institutions may have similar yet differen-
t requirements and guidelines), (c) collaborative tasks
requiring frequent interactions among participants and
many iterations over the same step or even repetitions
of previously accomplished steps, e. g. writing a book
by several co-authors. Typically, WFMS support pro-
cessing of documents, of mail, or are concerned with

coordination of legacy and newly developed applica-
tions. There exists a variety of commercial offerings,
usually not developed from ground up as WFMS but
built on top of applications designed for other uses, such
as image-processing, e. g. FileNet’s WorkFlo, relational
database management systems, e. g. IBM’s FlowMark
and computer supported collaborative work e. g. Lotus
Notes. The interest in WFMS led to the creation of
the Workflow Management Coalition (Workflow Man-
agment Coalition 1996) that brings together designers
and users of WFMS systems.

Process
Definition

Interface 1

Woerkflow API and Interchange

Administration &
Monitoring Tools

Workflow Workflow
Engine(s) 8 Engine(s)
s
:

interface 2 Interface 3

=
Interface 5

Workflow Invoked
Client Applications
Application

Figure 1: Reference model of a Workflow System intro-
duced by the Workflow Management Coalition (Work-
flow Managment Coalition 1996)

The basic architecture of a workflow system is depict-
ed in Figure 1 and consists of several components: work-
flow/process definition module, the workflow engine(s),
support and monitoring tools, various client applica-
tions. Most existing systems are RDBMS-based and, in
theory, can take advantage of the reliability, availabil-
ity and scalability features of the underlying database
system. However, in practice workflow systems require
advanced transaction models not supported by most
commercial DBMS. Consequently, an Workflow Man-
agement System built on top of the DBMS does not ex-
hibit desired properties (Alonzo et al. 1997). Moreover,
many of the tasks that a workflow system might be used
to automate are non-transactional in nature (e. g. in-

teraction with humans, integration of applications that
do not provide transactional semantics support), which
further limits the benefits of basing a workflow man-
agement system on a DBMS (Worah & Sheth 1996).
It is also worth noting that the typical usage profile of
a WFMS is dissimilar to those of a RDBMS. RDBMS
systems usually are subject to many read requests and
relatively few updates while in the case of WEMS the
queries are not very elaborate (do not require sophisti-
cated data query language features) and updates occur
with higher frequency.

Uses of agents in WFMS have been discussed in
several publications e. g. in (Chang & Scott 1996;
O’Brien & Wiegand 1998). Usually in WFMS imple-
mentations agents act as personal assistants performing
actions on behalf of the workflow participants and/or
facilitating interaction with other participants or exist-
ing WEMS. In this paper we propose an agent—based
architecture for workflow enactment and for the moni-
toring components of a workflow management system.
In particular we concentrate on the use of agents as
case managers: autonomous entities overlooking the
processing of single units of work. Qur assumption is
that an agent—based implementation is more capable of
dealing with dynamic workflows and with complex pro-
cessing requirements where many parameters influence
the routing decisions and require some inferential capa-
bilities. We also believe that the software engineering of
workflow management systems is critical and instead of
creating monolithic systems we should assemble them
out of components and attempt to reuse the compo-
nents.

Recently, we proposed a multi — plane state ma-
chine agent model (B6loni & Marinescu 1999a) and re-
leased a component — based architecture for building
agents. Bond agents were used to construct a network
of PDE solvers (Tsompanopoulou et al. 1999), to sup-
port adaptive resource allocation for multimedia appli-
cations (Jun et al. 1999), and for several other projects.

This paper is organized as follows. In Section we
briefly describe the multi — plane state machine agent
model we have proposed (B6loni & Marinescu 1999a)
and implemented in the Bond system (B6loni & Mari-
nescu 1999b). Then, we review briefly various workflow
models in Section and the Workflow Definition Lan-
guage in Section . The workflow management architec-
ture we propose is presented in Section .

A Multi-Plane State Machine Agent
Model

In this section we present a model for software agents.
An agent is a composite object consisting of: (1) a set of
planes, P, representing n concurrent activities, and (2)
a model of the world, W containing information about
the environment.

A={P,W}
P={P,P,,...P,}

Each concurrent activity is described by a state ma-
chine, P;, it consists of a set of states S; with |S;| ele-

ments, S7 , a set of transitions, T; with |T;| elements TZ’ ,
and a set of strategies, 6; with |6;| elements, 7. Each
state has one strategy associated with it, thus |6;] = ||

Py ={5;,T},0;}

We say that P; is in state Sf if the strategy associated
with this state, 0? has completed and reported either
success or failure. Each strategy 0? , reveals an interface

Kk consisting of a subset of its state variables. The
actions carried out by strategies are atomic, either all
state variables in the agent’s interface are updated or
none is. Strategies have a bounded ezecution time, a
strategy 6! either terminates within 7; units of time or
aborts.

The model of the world is a passive object consisting
of the intersection of the & interfaces and the agent
state vector reflecting the state of each individual state

machine, ¢ = (¢1, P2, ..¢n)-

W = (k,¢)

All actions carried out by an agent are the result of
the execution of the strategies in the set {6 }. Thus an

agent composes the {6/ } strategies into coherent actions
such that n of them are being carried out concurrently.

The blueprint of an agent is a textual description of
all the components presented above. Agents are cre-
ated from blueprints by dedicated objects called agent
factories.

Single plane agents support multiple threads of con-
trol confined to a single strategy, they do not support
independent activities running concurrently. Designing
reactive agents able to respond to external events could
be cumbersome and inefficient when we are restricted
to single plane agents. External events must be queued
and the reaction time, can be substantial because the
agent must reach a state when it is capable to respond
to external events.

Yet single plane agents can be very useful and per-
form complex functions. For example consider the fol-
lowing specification of a data acquisition and analysis,
DAA process: a set of m sensors provide raw data that
needs to be checked for consistency. If the consistency
test succeeds, the raw data is archived and then a mod-
eling program is activated, else a new set of raw data is
collected. The consistency check, requires an inference
engine, it is based upon a set of rules that guarantee
that at least my, m; < m sensors function correctly,
that precisely mq, ms < my critical sensors are among
those functioning correctly, and that the data provid-
ed by the correct sensors have statistical characteristics
within a given range. Once the results of the consis-
tency test are known, a procedure is activated to select
the site(s) where the computer models will run. This
selection procedure is also rule-based, up to date status
information about the systems described in a resource

file is collected. Depending upon the number of data
sets in the batch, we select a subset of systems in the
resource file as modeling site(s). Finally, a data stag-
ing phase replicates the raw data sets to the modeling
site(s) and the modeling program is activated at each
of the selected sites.

Figure 2: Data Acquisition and Analysis Agent

Figure 2 shows the state transition diagram of the
DAA agent. For sake of simplicity we do not show the
error recovery states. The agent starts in an initial-
ization state. The Init strategy loads into the agent’s
model the sensor configuration file, the resource file, the
rules and facts for the consistency check, the rules and
facts for selecting the modeling sites, and possibly oth-
er information. In the sensor state, the agent executes
the Sense strategy and visits all the sites specified in
the sensor configuration file to determine if the raw da-
ta sets are available. Then the system moves into the
data acquisition state, it executes the date migration,
Dm strategy, and collects all raw data sets. In the next
state we perform the consistency test. We run the In-
ference strategy with the proper sets of facts and rules
available from the agent’s model and if successful the
strategy writes into the agent’s model the information
necessary to identify the selected sensors and the raw
data sets they provided. In the next state we evaluate
the status of the resources in the resource file using the
Status strategy. Then we select the target systems for
modeling using again the Inference strategy but with
a different set of rules and facts. Next we move into
a data staging phase and execute the date migration,
Dm strategy with a different set of sources, destination-
s, and data sets. Finally we enter the modeling state
where a program ezxecution, Pexec strategy is used to
trigger the execution of the modeling program.

This example illustrates important aspects of the
methodology for agent design presented in (B6loni &
Marinescu 1999a). The Data migration and the In-
ference strategies are reused. FEvery time a strategy
is instantiated it updates its internal state with data
from the model and upon completion updates the mod-
el.The agent’s model serves as a shared memory for all
strategies of a state machine. In the case of a single
plane agent the access to the model is strictly sequen-
tial, no race conditions may occur. Individual strategies
exporting variables in its interface may associate a ca-
pability with each variable and limit access to it only
to strategies granted the capability.

The methodology encourages a hierarchical design.
Some of the strategies presented above e.g Sense and
the Status are themselves composed of strategies that
may run concurrently to explore the status of each sen-
sor or report performance data from individual systems.

The methodology encourages a gradual approach to
complex system design (Bo6loni & Marinescu 1999c¢),
(Boloni et al. 1999). In our example we design and
test first a DAA agent capable to run the modeling
program on a fixed target system. Then we add the
dynamic selection strategy for a single target system.
Finally we replace the program execution, Pezec strat-
egy with one allowing cooperation among a group of
modeling programs.

The visitor pattern can be used to accommodate cas-
es when code mobility is undesirable. For example pro-
prietary code may be used to report the resource status.
Thus the resource status, Status strategy may require
the agent to visit individual sites and at each site acti-
vate a strategy available only locally. Last but not least
this example shows that agent autonomy and mobility
are complementary dimensions of agent design.

The behavior of a Bond agent can be altered dramat-
ically while the agent is running by adding new planes
or by altering the state machine of an existing plane.
This process, called agent surgery, modifies the data
structure controlling the scheduling of various activi-
ties of the state machines of the agent’s planes. Once
the surgery has been performed the modified blueprint
can be generated. For example, in case of the data ac-
quisition and analysis agent, instead of using a visitor
pattern for checking the sensors, we can modify the a-
gent by adding one plane for monitoring each sensor
and for performing some data reduction locally. In this
case the planes of the agent would run ad different sites.

This dynamic modification of the agent may be trig-
gered by timing consideration, e. g. when the number
of sensors exceeds a certain threshold it may be imprac-
tical to check them one after another and create planes
that check the status of the sensors concurrently.

In this framework, we can construct the new workflow
specification from the blueprint of the modified agent.

Workflow models

How to build the case managers using the Bond frame-
work? We are looking for a conceptual framework to

o design/define/analyze workflows, and
¢ realize workflows at runtime.

Though we are primarily interested in the second ob-
jective, it seems advantageous to use the same frame-
work for both steps, since we cannot ignore the de-
sign/analysis issue and let some external tools handle it
because ultimately we are interested in allowing “sen-
sible” dynamic changes of the workflow. We wish to
express parallel, sequential, and conditional execution
as well ag any combinations thereof. In any case a work-
flow can be presented as a directed graph with certain

nodes marked in some way to denote the state of exe-
cution at a given time. Several approaches are possible:

e Activity charts — nodes are activities, arcs can be
labeled by the data transferred.

e State charts — nodes are states, arcs are labeled by
the activities (actions) to be performed.

e Petri nets — both activities and states are represented
by nodes (Petri net transitions and places, respective-

ly)

The activity charts based model requires that the
routing information be associated in some way with the
action. An example here is the model presented in the
Workflow Definition Language specification, described
in Section . This approach does not seem to be very
appropriate for our purposes because if we were to map
activities into Bond strategies then we would have to
combine routing functionality (specific to a particular
workflow) and domain functionality (very often gener-
ic in nature) in one strategy thus considerably limit
reusability of strategies. This approach is also not very
well suited to model activity triggers and milestones
(see (Van der Aalst 1998)).

An example of the state — based approach is reflected
by the statechart concept (Harel et al. 1987), where ac-
tions may be initiated and stopped whenever the system
performs a transition from one state to another. More
specifically, each transition has associated with it the
triple (Event, Condition, Action). The action is per-
formed when the transition takes place, namely when
the specified event occurs and the specified condition
holds. Statecharts were used successfully in the MEN-
TOR project (Wodtke et al. 1997). An advantages of
this approach is that implicit OR~split can be easily
modeled (Van der Aalst 1998).

Petri net based models are a good example of the
third approach, and are also used in variety of work-
flow products like INCOME/STAR (Promatis GmbH)
or COSA (Software-Ley GmbH, (Sof 1998)). Petri net-
s were also chosen as a workflow model in the Bond
system.

The transitions between states in the Bond system
are unconditional and cannot directly cause any actions
to be performed, the routing functionality has to be
implemented in the strategies. Therefore the strategies
used in Bond for workflow management belong to one
of the two categories:

e domain strategies that implement domain function-
ality and are followed by only one transition called
“success”

e routing strategies that decide which activities to per-
form next and implementing synchronization

The set of states in the state machine of a workflow can
be divided into two disjoint subsets depending upon the
type of strategy performed. There are no transitions
among states performing domain strategies or among
states performing routing strategies. Thus the state di-
agram of the Bond agent implementing an workflow is

an oriented, bipartite graph. If we add the requirement
that the state associated with a domain strategy can-
not be entered before all the preceding states associated
with routing strategies are entered, and that after leav-
ing the state associated with the domain strategy all
the following states performing routing strategies are
entered, it is clear that the execution of the Bond agent
implementing an workflow can be modeled by a Petri
Net. In this mapping the states of the Bond state ma-
chine performing domain activities correspond to Petri
net transitions, the states performing routing activities
correspond to places, and Bond transitions correspond
to arcs. The markings of the Petri net correspond to
the routing states the Bond agent is in at a given time.

Interoperability and Meta—Models

As a part of its standardization effort, the Workflow
Management Coalition defined a common meta-model
for describing the workflow process definition (see Fig.
1) and a textual format for the interchange of workflow
process definitions — the Workflow Definition Language
(WIDL) (Workflow Management Coalition 1998). Some
authors believe that the semantics of workflows is still
not well defined in WIMC standards, and Petri net-
s should be considered a lingua franca for workflows .
The entities defined by the model WIDL include:

(a) workflow participants representing sets of re-
sources or humans that can act as performers of various
activities in the process definitions;

(b) workflow applications which may be invoked to
support or wholly automate the processing associated
with each activity;

(c) process activities representing logical, self-
contained units of work to be processed by either par-
ticipants or applications;

(d) transitions defining flow of control between ac-
tivities with optional conditions associated with them;
participant definitions; and

(e) workflow relevant data, information passed among
activities that can influence the course of execution of
the workflow process.

In this paper we shall be mostly concerned with the
entities describing flow of control in the workflow pro-
cess definition, that is activities and transitions. The
design choice of the authors of the WIDL specifications
was to include as much of the routing information as
possible in the activity definition and retain the transi-
tion definitions as simple routing assignments. In effect
each activity description has three sections,

(1) A “prologue” defining the behavior of the activity
if multiple incoming transitions exist, referred to as the
join type of the activity,

(2) The definition of the actual activity, and

(3) An “epilogue”, that describes the behavior when
multiple outgoing transitions exist, referred to as the
split type of the activity. An activity A’s split (join)
type is AND if many activities following (preceding) A
are to be performed in parallel; activity A’s split (join)

type is XOR if only one of the specified activities is to be
performed after (before) A.

Some authors believe that the semantics of workflows
is still not well defined in WIMC standards, and Petri
nets should be considered a lingua franca for workflows

Bond Workflow Management
Architecture

An objective of the workflow management framework
proposed in this paper is to build case manager agents
based upon a static description of an workflow. There
are several ways of specifying a workflow. Several exist-
ing commercial products use a Petri-Net based defini-
tion language or design tool, while the Workflow Man-
agement Coalition defined the Workflow Definition Lan-
guage as an industry standard (Workflow Management
Coalition 1998). While we intend to base our framework
on Petri nets concepts and possibly maintain interop-
erability with the above mentioned products, we would
like to provide a translation facility from the Workflow
Definition Language to the Petri net based representa-
tion. This representation requires further transforma-
tions to obtain a Bond blueprint. The following sections
will present these procedures in detail.

Workflow Description (WDL or PN)

Workflow Definition and Aralysis

WDL to PN translator

‘ PN -based analysis tools ‘

Blueprint to PN Translator J

‘ PN to Blueprint Translator

1

Blueprint
Repository

Bond Agen/ Framework Bond Agentreamework
Agent Factory Agent Factory

Agent WM Agent

Figure 3: Workflow management in Bond

Figure 3 illustrates the definition and execution of a
workflow in Bond. Our design supports dynamic work-
flows and complex monitoring. The workflow manage-
ment agent originally created from a static description
can be modified based upon the information providing
by the monitoring agent. Several workflows may be
created as a result of mutations suffered by the origi-
nal workflow (Van der Aalst & Basten 1999). Once the
new blueprint is created dynamically, it goes through
the analysis procedure and only then it can be stored
in the blueprint repository. The distinction between the
monitoring agent and the workflow management agen-
t is blurred, if necessary they can be merged together

into a single agent.

Translation from the Workflow Definition
Language to the Petri Net representation

Figure 4: Handling of OR-splits. The top diagram
presents an activity A connected to activities B and
C by an OR-split. The diagrams below show how this
fragment of a workflow definition can be translated to
Petri nets

The basic objective while designing the translation
procedure was to maintain close resemblance of the re-
sulting Petri net to the original Workflow Definition
Language input. Another requirement was that the re-
sulting Petri net was meant to be used as a base for a
Bond blueprint. In particular it is necessary to avoid
duplicating transitions while translating OR-splits; for
analysis purposes, as presented in (Van der Aalst 1998),
OR-splits can be modeled by allowing the precondi-
tion place to be connected to multiple transitions cor-
responding to multiple copies of the original activities,
each of them with only one postcondition (see bottom
diagram in Figure 4). This is not acceptable for our
purposes, because if we map Petri net nodes to strate-
gies, it is necessary to make the actual routing decision
before the strategy corresponding to the activity is per-
formed. However this routing decision has to be made
based on the outcome of execution of this strategy.

The translation algorithm proposed herein iterates
over all the transitions defined in the Workflow Defi-
nition Language model file and classifies each of them
based upon the routing information contained in the
descriptions of the adjacent activities. Each transition
can originate from an activity that has either one outgo-
ing transition or multiple outgoing transitions forming
either an AND split or an XOR split. Similarly, each
transition can be followed by an activity that has ei-
ther one incoming transition or multiple incoming tran-
sitions forming either an AND join or an XOR split.
Thus there are 9 cases to be considered. They are de-
picted on the left hand side in Fig. 5 and for each of

Figure 5: 9 cases arising in translation of the workflow
description from the Workflow Definition Language to
Petri net based representation. An arc spanning ar-
rows connecting activities denotes an OR-split or join;
absence thereof denotes an OR-split or join.

them the translation is shown on the right hand side.

The translation is straightforward. However, special
care must be taken when a transition originates from
some activity A with an OR split and leads to another
activity D with an OR join. Activity A has one postcon-
dition and activity D has one precondition but they can-
not be merged because incorrect execution paths would
appear in the resulting Petri net (see Fig. 6 for an il-
lustration). Therefore a “dummy” Petri net transition
is inserted to connect A’s postcondition place to D’s
precondition place.

Note that the Workflow Definition Language speci-
fication provides for a special kind of activity (marked
with the keyword ROUTE) to allow for more complex
routing constructs — therefore the introduction of “dum-
my” transitions in the Petri net representation does
not depart too far from the conceptual model of the
Workflow Definition Language. Because the Petri net
representation resembles closely the Workflow Defini-

Figure 6: Spurious execution path C => B appears
when a workflow transition connects an activity A with
an OR-split with an activity D with an OR-join and
A’s postcondition place is merged with D’s precondi-
tion place.

tion Language representation, it is possible to translate
back from the Petri net representation to the Workflow
Definition Language representation. This is advanta-
geous for interoperability reasons, especially because we
would like to change the workflow definition dynami-
cally, at execution time, and reflect that change into
a new workflow expressed in the Workflow Definition
Language.

Translation from the Petri Net
representation to Bond blueprint

The purpose of this section is to present a method of
simulating a Petri net on the Bond multi—plane finite
state machine that allows the Bond agent framework
to function as a workflow enactment system. In this
case the strategies for states corresponding to Petri net
transitions are used to perform workflow activities. The
approach presented here is not limited to the workflow
management domain i. e. it can be viewed as an exten-
sion to the Bond system that allows Bond agent defini-
tions to be formulated in the language of Petri nets.

The translation from the Petri Net representation to
the Bond blueprint is most straightforward for a class
of Petri nets called S-nets. In these Petri nets | ot |=
1 =| te | for every transition ¢, i. e. each transition has
exactly one incoming arc and outgoing arc. If the initial
marking of an S-net has exactly one token and the net
is strongly connected then the net can contain only one
token at any time (thus it immediately follows that it is
safe) and in result it can be simulated by a single-plane
Bond finite state machine.

Not all Petri nets are S-nets (which is quite fortunate
in fact as their main use is to model concurrency absen-
t in state machines), however for a large class of Petri
nets (containing nearly all the nets useful for modeling
workflows) there exists a systematic method of simu-
lating them on the Bond multi-plane state machine. It
is convenient to introduce here the following definitions
and a theorem from (Desel & Esparza 1995).

Figure 7: Example of the S-decomposition procedure.
The top diagram represents the original net, the follow-
ing two depict the two S-components with “dummy”
transitions selected. The bottom diagram represents
the second S-component after the dummy transitions
have been contracted.

Subnets. Let (S, T, F) be a Petrinet and X C SUT.
The triple (SN X, TN X, FU (X x X)) is the subnet of
N generated by X.

S-components. Let N’ be the subnet of a net N
generated by a nonempty set X of nodes. N’ is an
S-component if

e esU se C X for every place s of N

e N’ is a strongly connected S-net.

S-covers. Let C be a set of S-components of a net.
C is an S-cover if every place in the net belongs to an
S-component of C. A net is covered by S-components
if it has an S-cover.

Theorem Free choice, bounded and safe nets have
S-covers.

Moreover, there exist efficient algorithms for finding
S-covers of free choice, live and safe nets. The algorithm
used in the current implementation is taken from (Lee,
Nishimura, & Kumagai 1993) and runs in O((|S||T])?).

This result constitutes the base of the translation
procedure from Petri nets to Bond blueprints. We
introduce a separate Bond plane for each of the S-
components obtained from the decomposition proce-
dure and populate it with Bond states corresponding
to places (we shall refer to them as p-states) as well as
transitions (further called t-states) in the S-component
and add Bond transitions corresponding to arcs (see
Fig. 7). However, the decomposition procedure does
not produce disjoint components. Several Bond states
may corresponding to one node in the original Petri net,
in particular several t-states may correspond to one ac-
tivity to be performed by the agent, which is clearly
undesirable. To alleviate this problem we simply mark
all but one of the t-states corresponding to one Petri net
transition (which in turn corresponds to one activity)
as “dummy” and associate with them a strategy that
once started immediately terminates reporting success.

In order to be able to simulate the Petri nets on the
Bond multi-plane state machine we also have to add
synchronization functionality to the strategies assigned
to p-states. This might seem to be a departure from
the Petri net model where synchronization is explicitly
expressed in the layout of the net, however, one has to
keep in mind that in the Petri net model each transition
possesses its own “thread of control” i. e. it can fire
whenever it is enabled, independently of others, while
in Bond a “thread of control” is assigned to each plane,
and the Petri net transition cannot “decide” when it
wants to fire because entering the state corresponding
to a Petri net transition causes the associated activity
to start executing. Even though it might be possible to
implement a scheme in which the strategies associated
with the states corresponding to Petri net transitions
decided when to perform the actual work, this would
break the design principle of separation of the routing
and domain functionality.

Therefore in our design it is the role of the strategies
associated with p-states to decide when to enter the t-
state that follows them. Even though in general a tran-
sition can have many preceding places, each transition
has just one preceding place in an S-net, and although
a transition can belong to many S-components, it will
be marked as “dummy” in all but one of them, thus the
state in charge of synchronization can be determined u-
nambiguously. The strategy for this state has to wait
until all the other p-states corresponding to the places
preceding the given transition are entered and succeed.
Additionally it can wait until an (external) trigger con-
dition necessary for firing of the transition holds.

Note that since the “dummy” transitions do not per-
form any useful work they can eventually be removed
and their preceding and following places merged as long
as no spurious execution paths are created and the rout-
ing conditions are correctly rewritten. This process
can be iterated until no further improvements can be
achieved (see Fig. 7 for an example).

Conclusions

In this paper we present an agent based workflow man-
agement system capable of supporting dynamic work-
flows. Data intensive applications of workflow man-
agement (e. g. climate modeling) require the dynamic
modification of a workflow.

We describe briefly a multi-plane state machine a-
gent model and its implementation. Agents are assem-
bled dynamically from descriptions in the Blueprint lan-
guage and can be modified while running,.

We discuss problems pertinent to the translation
of the Workflow Definition Language into Petri net-
s and of Petri nets into Bond blueprints. This
project is part of the effort to develop an workflow
management framework for the Bond system. The
Bond system is available under an open license from
http://bond.cs.purdue.edu.

Acknowledgments

The work reported in this paper was partially supported
by a grant from the National Science Foundation, MCB-
9527131, by the Scalable I/O Initiative, and by a grant
from the Intel Corporation.

References

Alonzo, G.; Agrawal, D.; El-Abbadi, A.; and Mohan,
C. 1997. Functionality and limitations of current work-
flow management systems. Technical report, IBM Al-
maden Research Center.

Bol6ni, L., and Marinescu, D. C. 1999a. A Multi —
plane State Machine Agent Model. Technical Report
CS TR 99-027, Computer Sciences Department, Pur-
due University.

Boloni, L., and Marinescu, D. C. 1999b. An Object-
Oriented Framework for Building Collaborative Net-
work Agents. In Kandel, A.; Hoffmann, K.; Mlynek,
D.; and Teodorescu, N., eds., Intelligent Systems and
Interfaces. Kluwer Publising House.

Boloni, L., and Marinescu, D. C. 1999¢. Biological
metaphors in the design of complex software systems.
Journal of Future Computer Systems. (in press).

Boloni, L.; Hao, R.; Jun, K. K.; and Marinescu, D. C.
1999. Structural biology metaphors applied to the de-
sign of a distributed object system. In Proc. Workshop
on Biologically Inspired Solutions to Parallel Process-
ing Problems, LNCS, 275-283.

Chang, J. W., and Scott, C. T. 1996. Agent—based
Workflow: TRP Support Environment (TSE). Com-
puter Networks and ISDN Systems 28:1501.

Desel, J., and Esparza, J. 1995. Free Choice Peri
Nets, volume 40 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Harel, D.; Pnueli, A.; Schmidt, J. P.; and Sherman,

R. 1987. On the Formal Semantics of Statecharts. In
2nd IEEE Symposium on Logic in Computer Science.

Jun, K. K.; Boloni, L.; Palacz, K.; and Marinescu,
D. C. 1999. Agent—Based Resource Discovery. Tech-
nical report, Departament of Computer Sciences, Pur-
due University.

Lee, D.; Nishimura, T.; and Kumagai, S. 1993. Struc-
tural and behavioral analysis of state machine allocat-

able nets based on net decomposition. IEICE Trans.
Fundamentals E79-A(3):399-408.

O’Brien, P. D., and Wiegand, M. E. 1998. Agent based
process management: applying intelligent agents to
workflow. Knowledge Engineering Review 13:2.

Software-LEY. 1998. COSA Workflow 2.0 Product
Specification.

Tsompanopoulou, P.; B6l6ni, L.; Marinescu, D. C.;
and Rice, J. R. 1999. The Design of Software Agents
for a Network of PDE Solvers. In Workshop on A-

gent Technologies for High Performance Computing,
Agents 99, 57-68. IEEE Press.

Van der Aalst, W. M. P., and Basten, T. 1999. Inheri-
tance of Workflows. An approach to tackling problems
related to change. (draft).

Van der Aalst, W. M. P. 1998. The Application of
Petri Nets to Workflow Management. The Journal of
Circuits, Systems and Computers 8(1):21-66.

Wainer, J.; Weske, M.; Vossen, G.; and Medeiros,
C. B. 1996. Scientific workflow systems. In NSF Work-
shop on Workflow and Process Automation: State of
the Art and Future Directions.

Wodtke, D.; Weissenfels, J.; Weikum, G.; and Dit-
trich, A. K. 1997. The Mentor Project: Steps Towards
Enterprise—Wide Workflow Management. In Proceed-
ings of the IEEE International Conference on Data
Engineering.

Worah, D., and Sheth, A. 1996. What Do Ad-
vanced Transaction Models Have to Offer for Work-
flows. In Proceedings of the International Workshop on
Advanced Transaction Models and Architectures (AT-
MA), Goa.

Workflow Management Coalition. 1998. Interface 1:
Process definition interchange process model. WfMC
TC-1016-P v7.04.

Workflow Managment Coalition. 1996. Work-
flow Managment Coalition Terminology and Glossary.
Technical Report WFMC-TC-1011, Workflow Manag-
ment Coalition.

