
Scalable Online Analysis of Semantic Web Data

Pingpeng Yuan, Pu Liu, Buwen Wu, Delong Wu, Huizhong Zhong, Hai Jin

Service Computing Technology and System Lab,
Cluster and Grid Computing Lab,

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@mail.hust.edu.cn

Abstract. In order to explore RDF data in decision-making, there is an
increasing demand for online analytical processing of such data. Since RDF
data model is a graph model and highly flexible, it poses some challenges for
analytical tasks. Although many systems have been developed to store RDF
data, few of them can perform analytical tasks due to many reasons. Here, we
present an online analysis system - DBLink for RDF data. DBLink can be
united for enabling large-scale RDF data analysis. Since SPARQL does not
have language elements to support analytical operations, we design a language
DQE in our RDF data store. Experimental results show the system achieves a
performance improvement in analytical tasks than MySQL. Especially, the
system greatly improves the execution time of those queries which need to
analyze a large sub-graph of RDF data set.

1. Introduction

More and more organizations, such as White House and New York Times are making
their data available on the Web. And more techniques for annotating Web content
with metadata are available. Thus, the Semantic Web or the Data Web enhanced by
RDF-based representations is growing rapidly. The data web shows many interesting
interactions between entities including persons, revealing huge network structures.
For example, collaboration network among researchers indicate who co-author papers
and which pairs have the largest collaboration frequency. People’s relationships
online are formed through people profiles described by FOAF. In fact, many more
networks are emerged by the help of Web or Semantic Web. In above networks, not
only individual entities but also the interacting relationships among them are
important and interesting. Researchers need to analyze the networks in order to
answer the following questions; “Which are top n papers referred mostly?" “Which
conferences/journals are mostly related with a conference/journal?” etc. The
information required to answer those queries are formed as a graph. This demands a
tool or a system that can manage and analyze such data efficiently.

It is interesting to analyze the semantic web data in an OLAP manner. However,
traditional OLAP mainly focus on supporting the data cube processing tasks with the
limited support for graph structured data such as RDF. The structure of the RDF data
poses some challenges for analytical tasks. First, RDF data generally also include

2 Pingpeng Yuan, Pu Liu, Buwen Wu, Delong Wu, Huizhong Zhong, Hai Jin

schema data, which describe properties and classes of RDF resources, with semantics
for generalization-hierarchies of such properties and classes. Query analyzer need to
understand schema in order to execute queries correctly. Secondly, how are RDF data
stored efficiently for performing analytical queries. RDF data are consisted of many
individual triples, each of which is a statement. There may be many statements about
an entity which are independent. In order to execute queries on RDF data, join
operations are required to assemble the statements and then multi-pass aggregations
need to be computed, thus making the execution of these queries inefficient. Further,
analytical queries are cumbersome, even impossible to express using SPARQL
because the language does not support grouping and aggregations operations, which
are very common in analytical tasks.

Here, we present an Online Analysis Oriented Semantic Web Data Storage System
– DBLink which is designed with fast low level graph operation primitives as well as
a query interface designed for high level graph based queries. If a single system of
DBLink cannot process large scale RDF data due to physical limitation from
computers, several systems of DBLink can be united to answer users’ queries.

The remainder of this paper is organized as follows. In section 2 the overview of
DBLink are presented. Section 3 describes the query language of DBLink. The
experiments and the evaluation of the performance of DBLink are presented in
Section 4. Finally, conclusions are given in Section 5.

2. Overview of DBLink

In order to process RDF data in an OLAP manner, we make the following design
decisions:

Store, operate and query RDF data in main memory. We choose to design a
main-memory based RDF triple store for two reasons: Firstly, due to the advances in
memory technology, the memory size is bigger and bigger. Secondly, main memory
stores provide high throughput and fast response time. If computer memory places
physical constraint on our system, several systems of DBLlink, each of which
manages a subset of data set can be united to execute queries. Thus, our system can be
extended according to data volume.

Grid partition and regroup RDF data. Different from triple store or vertically
partitioning, DBLink partition RDF triples according to schema information, such as
type of class and property. The approach partitions the RDF data vertically and
horizontally. We name this partition as Grid partition. Then DBLink regroups triples
of multi-valued property type. By doing that, redundancy can be reduced, and certain
triple retrieval and aggregation operations can be executed much faster.

Use a compact storage structure. As triples contain string literals which require
large storage space, we adopt the approach of replacing all literals by ids using a
mapping dictionary, where strings are id encoded.

The triples are sorted lexicographically by ID after grouping columns by
predicate and are directly stored in chunks, fixed-size storage spaces. Although this
means of data organization is similar with vertically partitioning [1] in some sense,
we partition RDF data into small fixed-size chunks. So we would not have potential

Scalable Online Analysis of Semantic Web Data 3

scalability problems when the size of tables varied. Moreover, we adopt delta
compression to compress data since the collation order may cause values of
neighboring triples to be similar.

To gain fast access to records, different from many triple stores, such as RDF-3X
which maintain all six possible permutations of S, P and O in six separate indexes [2],
we only need keep two permutations of S, O. So, the total size for indexes is also
much less than the size the general triple store systems require for indexes. We adopt
hash to index the chunks. We compute the hash value of id and find the chunks that
contain the largest search-key value. Moreover, storing triple matrix according to
predicate also provides some kind of index.

Schema-aware RDF storage system, RDF data can be divided into instance data
and schema data. RDF schema (RDFS/OWL) data and instance data have different
characteristics. DBLink adopts a schema aware approach rather than schema
oblivious approach in which all data including schema data are stored together. In
DBLink, for the support of RDFS, four kinds of instance tables: Class,
ObjectProperty, DatatypeProperty and Datatype for storing corresponding instances
are designed. Each record of the instance tables points to the instance table which
maintains the instances of the corresponding resource types.

Optimized for read mostly scenarios. Current semantic web applications rely
on querying, inference or analysis of RDF data heavily, which are all read mostly
operations. Write operations, such as inserting and updating are relatively rare or
periodic. Delete operation can be done in a lazy deletion and periodic clean way.
DBLink adopts grouping multi-valued attributes, and indexes etc. for optimizing the
performance under read mostly scenarios.

Provide a low-level API to support basic graph operations. So, user can
construct high level graph based algorithms using the API, such as graph searching,
matching, link analysis and so on. Some graph operations must be implemented really
fast, such as to get all the successor of a node with specified edge type.

Provide a high-level query interface, which supports structured queries for
extracting data from the RDF repository, and provide some special syntaxes for
search function and graph based retrieval or analytical queries.

3. Query language

The World Wide Web Consortium (W3C) recommends SPARQL for querying
RDF data. However, SPARQL is not expressive enough to meet requirements for
queries, such as result aggregation and path computation which are missing from the
standard SPARQL definition [5]. Considering the requirements of analytical
processing in graph, we designs a graph based query language - DBLink Query
Expression (DQE) in addition of support of SPARQL. The DBLink Query Expression
(DQE) uses a simple graph based syntax. Currently several basic operators in DQE
are implemented as shown in Table 1. Complex queries can be constructed using
these basic operators.

The execution process of a common DQE starts form a set of staring nodes, then
expands those starting nodes with paths described by expand operators, and filter

4 Pingpeng Yuan, Pu Liu, Buwen Wu, Delong Wu, Huizhong Zhong, Hai Jin

those nodes by filtering operators, or perform special operations like aggregation on
those nodes or paths. The expanded nodes are now considered new starting nodes, and
is passed to a new phase of query execution. Finally, the whole expanded subgraph is
returned as query results.

Table 1. Basic operators of DQE

Operator Notation Description

Select property Retrieval specific property values of the start nodes, use property name
as notation

Count C Count triples of specific property whose subjects are start nodes
Filter F Filter the start nodes by various conditions

Expand E Expand start nodes by graph edges of specific property type
Expand N Expand start nodes by graph edges of specific property type
Closure L Expand start nodes by graph paths consisted by specific property type

Connect * Binary operator, pass the expanded nodes of left DQE to the right DQE
as start nodes

Plus + Binary operator, union the two query results and connect the tow
expanded node list

Self 1 Do nothing, just return input as output

Search S No input, full text search against the specific property value of instances
of specific class type

4. Evaluation

Below, we provide the performance details when our system executes SPARQL
queries and performs analytical tasks on data extracted from the BTC2010 dataset and
other data sources.

4.1 SPARQL query evaluation

We chose MonetDB [1] and RDF-3X (v0.3.3) [2] for our evaluation, as they show
better performance than others. The recent emerging system BitMat [3] has a high
performance on query execution as said in paper [3]. However, due to its public
unavailability, we have to ignore it in the experiments.

We have done the experiments on a server, the configuration of which is as
follows: Intel Xeon CPU E7420 4 Way 4-core 2.13GHz, 64GB memory; Red Hat
Enterprise Linux Server 5.1 (2.6.18 kernel). Because no queries for BTC2010 data set
are available, we generated a dataset using LUBM [4] which is widely used by the
Semantic Web community for benchmarking triple stores. All the queries are listed in
Appendix A.

To account for caching, each of the queries is executed for five times
consecutively. We took the best result to avoid artifacts caused by OS activity. For
warm caches we ran the queries five times without dropping caches, again taking the
best run-time. Experimental results are shown in Table 2, 3. Note that our current
DBLink does not use any sophisticated cache management and also does not employ

Scalable Online Analysis of Semantic Web Data 5

high performance join technologies. Due to this, as opposed to RDF-3X and
MonetDB, in the queries the difference between our cold and warm cache times is not
high, most of them are almost same. According to the results, for Q1, Q2, Q4, Q5, Q6,
Q7, DBLink excelled over RDF-3X. In cold cache cases. In warm cache cases,
DBLink excelled over RDF-3X for Q1, Q2, Q5, Q7. In all cases, DBLink performs
better than MonetDB.

Table 2. LUBM 69M Triples (time in seconds, best times are boldfaced)

 Q1 Q2 Q3 Q4 Q5 Q6 Q7
Cold caches
RDF3X 0.289 0.036 2.061 5.051 111.212 5.150 0.126
MonetDB 7.924 2.665 36.090 20.501 132.502 8.440 0.013
DBLink 0.001 0.002 2.688 3.854 7.602 4.950 0.002
Warm caches
RDF3X 0.0017 0.0035 1.374 1.893 111.141 4.036 0.016
MonetDB 0.139 0.0029 21.625 16.245 124.007 8.101 0.005
DBLink 0.0009 0.0021 2.701 3.697 5.934 4.855 0.002

Table 3. LUBM 1000M Triples (time in seconds, best times are boldfaced)

 Q1 Q2 Q3 Q4 Q5 Q6 Q7
Cold caches
RDF3X 0.489 0.371 43.633 92.486 >1500 158.77 1.579
DBLink 0.012 0.0045 47.9 76.3 184.7 131.46 0.0029
Warm caches
RDF3X 0.0017 0.0035 34.006 40.766 >1500 89.247 0.265
DBLink 0.0011 0.0023 45.3 65.18 123.4 114.52 0.0027

4.2 Analytical query evaluation

The dataset used in the experiments are consisted of literatures which are mainly
extracted from BTC2010 dataset. Other sources, such as Libra, CiteSeer and Google
Scholar are also extracted. The detail information about the data set is listed in table 4.

Now, few RDF stores excluding RDBMS can execute analytical queries because
SPARQL does not support analytical operations as said in section 3. And many RDF
storage systems generally store RDF data in a RDBMS, such as MySQL. Thus,
MySQL are chosen to compare in the experiments because MySQL is considered one
of the fastest RDBMS. In the experiments, MySQL version 5.1.29 for Linux x86_64
is used. All the tables use MyISAM storage engine. DBLink is compiled using GCC
3.4.6, with optimization parameter -O2. The experiments are performed on the same
server as the previous experiments.

The experiments are consisted of 5 queries (see Appendix B), which require to
analyze large scale graph, and each is executed 10 times. The query execution time
for all 5 queries and the average query execution time of 5 queries on both MySQL
and DBLink are shown in Fig. 1. All execution time presented in Fig. 1 is the average
of 10 runs of the queries. All queries on MySQL are executed many times so that the

6 Pingpeng Yuan, Pu Liu, Buwen Wu, Delong Wu, Huizhong Zhong, Hai Jin

data to answer queries are cached in main memory. Thus, the disk access time of
MySQL can be ignored.

Table 4. Data set for analytical query

Item Number
Articles in Journal 386481

Articles in Proceeding 613760
Book chapters 4718

Conference/Journal/Book 13009
Persons 615416

Citations 3665053
Terms 108983

Categories 6676
URIs 1750283

Fig. 1. Query execution time comparison of MySQL and DBLink

Fig. 2. Subgraph of conferences and publications related to Q3

According to Figure 1, DBLink performs a factor of 4-27 times faster than MySQL,
and the average speed up is 22.7. As shown in Figure 1, DBLink gets better speed up
factors comparing with MySQL when the query needs more time to execute. For
example, Q3 is to query conferences or journals which are mostly related to a

Scalable Online Analysis of Semantic Web Data 7

conference or journal. The subgraph related to Q3 is shown in Figure 2. There are
hundreds, even thousands of publications in conferences/journals, and each
publication usually cites or is cited by tens, even hundreds of other publications. So
the subgraph Q3 needs to analyze usually has thousands of edges. However, the
subgraph related with Q1 is relatively small because an author usually published tens
to hundreds of publication. So DBLink gains more speed up factor on Q3 than on Q1.

5. Conclusions

With the rapid growing of RDF data volume, it is essential to develop the systems
to process, specially analyze large scale RDF data efficiently. DBLink was designed
to enable large-scale RDF data analysis. DBLink shows high performance in
performing analytical tasks and SPARQL queries. The mainly contributions of the
paper are: 1) we present an Online Analysis Oriented Semantic Web Data Storage
System which can analyze the semantic web data in an OLAP manner. 2) Considering
the requirements of analytical workloads in RDF graph, we design an expression
language - DQE. 3) We design an optimized storage structure of RDF data which is
suitable for analytical tasks..

References

1. Abadi, D. J., Marcus, A., Madden, S. R., Hollenbach, K., Scalable Semantic Web Data
Management Using Vertical Partitioning. In Proc. of VLDB 2007, pp: 411-422

2. Neumann, T., Weikum, G.: The RDF-3X Engine for Scalable Management of RDF Data.
The VLDB Journal, 2009, DOI: 10.1007/s00778-009-0165-y

3. Atre, M., Chaoji, V., Zaki, M. J., Hendler, J. A.: Matrix "Bit"loaded: A Scalable
Lightweight Join Query Processor for RDF Data, In: WWW 2010, pp. 41-50. ACM
Press(2010)

4. LUBM. http://swat.cse.lehigh.edu/projects/lubm/
5. Erétéo, G., Buffa M., Gandon F., Corby O., Analysis of a Real Online Social Network

using Semantic Web Frameworks, In Proc. Of 8th International Semantic Web Conference,
2009, pp:177-192

Acknowledgments. This research was supported by National Science Foundation of
China (61073096) and Graduate Innovation Fund of Huazhong University of Science
& Technology (HF-07-01-2010-210).

Appendix A: Seven SPARQL queries from LUBM

Q1: SELECT ?x WHERE { ?x ub:subOrganizationOf <http://www.Department0.University0.edu> . ?x
rdf:type ub:ResearchGroup .}
Q2: SELECT ?x WHERE {?x ub:worksFor <http://www.Department0.University0.edu> . ?x rdf:type
ub:FullProfessor . ?x ub:name ?y1 . ?x ub:emailAddress ?y2 . ?x ub:telephone ?y3 .}

8 Pingpeng Yuan, Pu Liu, Buwen Wu, Delong Wu, Huizhong Zhong, Hai Jin

Q3: SELECT ?x ?y ?z WHERE { ?x rdf:type ub:UndergraduateStudent . ?y rdf:type ub:University . ?z
rdf:type ub:Department . ?x ub:memberOf ?z . ?z ub:subOrganizationOf ?y . ?x
ub:undergraduateDegreeFrom ?y . }
Q4: SELECT ?x WHERE { ?x rdf:type ub:Course . ?x ub:name ?y . }
Q5: SELECT ?x ?y ?z WHERE { ?z ub:subOrganizationOf ?y . ?y rdf:type ub:University . ?z rdf:type
ub:Department . ?x ub:memberOf ?z . ?x rdf:type ub:GraduateStudent . ?x
ub:undergraduateDegreeFrom ?y . }
Q6: SELECT ?x ?y ?z WHERE {?y ub:teacherOf ?z . ?y rdf:type ub:FullProfessor . ?z rdf:type
ub:Course . ?x ub:takesCourse ?z . ?x rdf:type ub:UndergraduateStudent . ?x ub:advisor ?y .}
Q7: SELECT ?x ?y WHERE {?y ub:subOrganizationOf <http://www.University0.edu> . ?y rdf:type
ub:Department . ?x ub:worksFor ?y . ?x rdf:type ub:FullProfessor .}

Appendix B: five benchmark queries for analytical tasks.

Q1: query top-10 cooperators of an author
DQE: $start*N$isAuthorOf*[$hasAuthor GroupByCountDesc 10:group]

Q2: query top-10 conferences or journals which are related with research interest of an author
DQE: N$isAuthorOf[$inCollection GroupByCountDesc 10:group]

Q3: query top-10 conferences or journals which are related with a conference or journal
DQE: N$hasPublication(N$hasReference+N$hasCitation)[$inCollection GroupByCountDesc

10:group]$label
Q4: query top-10 active authors in a conference or journal

DQE: N$hasPublication[$hasAuthor GroupByCountDesc 10:group]
Q5: query ：count yearly reference of an author

DQE: N$isAuthorOfN$hasCitation[$year GroupByValue:filter]

Appendix C: outline of the system

Categories Requirements or
Features

Overview of the System

Requireme
nts

Make use of the
BTC2010 dataset

For the purpose of presenting an interesting application of the
BTC2010 dataset, the system mainly analyzes the data about
literature from the dataset which are also stored in our systems.

Allowed to use other
data.

Although a small amount of data from the other sources, such as
Libra, CiteSeer and Google Scholar are also extracted, we focus
on BTC2010 dataset.

Usability Our system analyzes dataset and visualizes the analysis results
and can answer queries such as top-n
authors/conferences/journals/co-authors etc.

Additional
Desirable
Features

more than
store/retrieve triples

Our system not only stores/retrieves large numbers of triples, but
also analyzes dataset and visualizes the analysis results.

scalable When a single system of DBLink can not fulfill the tasks due to
physical limitation from computers, several systems can be
united for enabling very large-scale RDF data analysis.

use of the very large,
mixed quality data set

The experimental results in section 4 show our system can
process very large, mixed data set.

either function in real-
time or have a real-
time realization

When performing analytical tasks on literature, the system can
respond users’ query in real-time. If the data volume is larger,
the system also responds quickly although the response time
may be longer.

 Web Site http://202.114.10.134:8080/DBLink/ or http://www.semrex.cn/
DBLink

