
HadoopRDF : A Scalable RDF Data Analysis
System

Yuan Tian1, Jinhang DU1, Haofen Wang1, Yuan Ni2, and Yong Yu1

1 Shanghai Jiao Tong University, Shanghai, China
{tian,dujh,whfcarter}@apex.sjtu.edu.cn

2 IBM China Research Lab
niyuan@cn.ibm.com

Abstract. As data on the public web has been expanded rapidly and
more data is represented in the form of RDF as for its advantages, the
scalability problem while dealing with it becomes important. To store
and retrieve the RDF data, triple stores such as Sesame, 4store, have
been researched. However, these tools are designed on a single computer
and the ability to handle the scalability is limited. Hadoop is an open
source platform for distributed computing and has been widely used for
large-scale data analysis.

In this paper, we propose a system, HadoopRDF, to combine the two
using both advantages. HadoopRDF is built on a hadoop cluster with
many computers, and echo node in the cluster has a sesame server to
supply the service of storing and retrieving the RDF. Well, data partition
while loading the data, query optimization while being executed, and its
optimization evaluation model are concerned in the system. With the
computing ability of the cluster, we can do complex analytical tasks in
large-scale data set. Several special tasks are designed to express the
capability of the system.

1 Introduction

Nowadays, many data has been expressed in the form of RDF, for the reason of
its advantages. RDF is a standard format defined by W3C, which makes data
represented in a structural way and easily accessed by computers. Well, many
triple stores have been designed to store the kind of data and supply the service
of retrieving. The most famous are Sesame, Jena, 4store, and so on. Well, these
triple store are all designed on the single computer, and the ability to handle
the scalability is limited. So we need to expend the tools.

Hadoop is an open-source software for reliable scalable, distributed comput-
ing. Many large-scale data analysis tasks have been done on this platform. Using
a cluster with lots of computers, Hadoop provides a powerful computing ability
to handle the scalability well. Hadoop consists of two layers, the data storage
layer or the Hadoop Distributed File System (HDFS) and the data processing
layer or the MapReduce Framework.



HDFS is a block-structured file system. Files are cut into blocks and stored
in the cluster nodes which are called datanode. And there is a namenode which
contains metadata about the size and the location of the blocks.

MapReduce is a framework for the computing in Hadoop, which follows
master-slave architecture. Each job is broken into map jabs and reduce jobs,
which are executed in the slave nodes.

HadoopRDF combines both of the systems. Hadoop is used as the base ar-
chitecture. A cluster is arranged by hadoop which is considered as the com-
munication and controlling tool. All the jobs are ordered and arranged by the
internal rules in hadoop cluster. RDF triple store is placed in the slave nodes in
the cluster which supplies the basic storage and retrieves needs.

To make the methods effective, several special parts should be considered
during the design of the system.

2 Our Approach

In order to address the problem of offering a scalable data intensive comput-
ing environment, we propose the HadoopRDF, which combines both advantages
of high fault tolerance and high throughput of the MapReduce distributed frame-
work and the sophisticate indexing and query answering mechanism. HadoopRDF
is based on a modification to the Hadoop open source project. We connect the
single RDF data stores under the MapReduce framework. We rely on the logic
of Hadoop scheduling and tracking jobs to attain high fault tolerance. The idea
here is to substitute the rudimentary Hadoop Distributed File System (HDFS),
i.e. without indexes and a query execution engine, with more elaborated RDF
stores.



2.1 Architecture

HadoopRDF has a architecture similar to Hadoop that theoretically scales
up to thousands of nodes. The core of HadoopRDF is the Hadoop framework.

Hadoop is built on top of HDFS. HDFS is a replicated key-value store under
the control of a central NameNode. Files in HDFS are broken into chunks fixed
size and the replica of these chunks are distributed across a group of DataNodes.
The NameNode keeps track of the size and location of each replica.

Hadoop is a MapReduce framework for computational propose in data inten-
sive applications. It is a batch processing system conceptualizing an operation
unit as a job. A job consists of two steps - the map task and the reduce task.
These two tasks are distributed and run on a group of TraskTrackers. A Job-
Tracker is designated to schedule the jobs and maintain an optimal throughput.

As stated, we aim at incorporating the consummate index and the powerful
computational ability of current RDF stores into the MapReduce framework.
HadoopRDF extends the Hadoop framework in the following perspectives.

Communication with RDF store The RDF store connector is the interface
between the underlying RDF store and the TaskTrackers. The communication
between the RDF store and the task processor is in SPARQL. The task processor
feeds the RDF store with SPARQL queries and the RDF store returns results
in the form of key-value pairs. Hence, RDF stores act as the HDFS providing a
key-value store for RDF data.



Metainformation The meta-data of the chunks are kept in the NameNode.
The function of the metainformation is two-fold : 1) parameters for connection
between TaskTrackers and RDF store; 2) the information, including how the
data is partitioned and located, of the replicas in each DataNode. This info is
retrieved by the JobTracker and TaskTrackers to make up schedules and queries.

2.2 Data partitioning

When HadoopRDF loads an RDF graph, it partitions and distributes the data
onto DataNodes. The hasher reads in the raw RDF graph stored in the HDFS
and repartitions them according to the characteristics of the RDF stores.

The hashing function is specifically designed to adapt to the RDF data. It
ensures the optimal load balancing when executing the MapReduce job.

2.3 Query Optimizer

HadoopRDF provides a SPARQL query interface.
The query planner extends the Hive query planner. The Hive query planner

transforms HiveQL, a variant of SQL, into MapReduce jobs. The generated
MapReduce jobs correspond to the relational operators such as SELECT, JOIN,
TABLE SCAN and AGGREGATION.

The HadoopRDF query optimizer makes use of the relational operators in
Hive and generates a query plan according to the optimal performance of current
resources. The input SPARQL query will be first parsed into an abstract syntax
tree. The query optimizer retrieves the metadata for each subgraphs stored in
the NameNode. The plans are then analyzed and evaluated under a cost model.
Finally, the optimal MapReduce job will be selected as the plan. The job will
then be assigned to the TaskTrackers.

3 Application

The Billion Triple Challenge 2010 contains 1,441,499,719 triples which is com-
mensurate to the 2009 dataset.

3.1 Mining Job

We make use of the SPARQL to make statistics on the current RDF graph.

4 Appendix

4.1 Minimal Requirements

HadoopRDF loads the Billion Triple Challenge 2010 dataset and provides users
with a SPARQL query interface. We give various sample queries that utilize



the global information of the whole RDF graph. In these queries, we show the
capability of HadoopRDF with high throughput and high fault tolerance.

The main motivation of our application is to offer the community with a
solution building a distributed RDF query engine. The query engine theoretically
scales up to hundreds of nodes.

4.2 Additional Desirable Features

HadoopRDF scales up to hundreds of nodes with the Hadoop architecture.


