
TR Discover: Querying Interlinked Datasets
with Natural Language

Dezhao Song1, Frank Schilder1, Charese Smiley1, Chris Brew2 and Tom
Zielund1, Hiroko Bretz1, Robert Martin3, Chris Dale1, Steven Pomerville3,

John Duprey3, and Tim Miller4

1Research and Development, Thomson Reuters, Eagan, MN 55123, USA
2 Research and Development, Thomson Reuters, London, UK

3 Research and Development, Thomson Reuters, Rochester, NY 14694, USA
4 Intellectual Property and Science, Thomson Reuters, London, UK

{dezhao.song,frank.schilder,charese.smiley,chris.brew,thomas.zielund,

hiroko.bretz,robertd.martin,chris.dale,steven.pomerville,john.duprey,

tim.miller}@thomsonreuters.com

Abstract. We present TR Discover, a natural language interface for
querying interlinked datasets. Using a feature-based grammar, TR Dis-
cover parses a natural language question to its First Order Logic repre-
sentation, which is further translated into structured query languages,
including SPARQL or SQL. Because users will not necessarily know what
the coverage of the system is, TR Discover offers a novel auto-suggest
mechanism that can help users to construct well-formed and useful nat-
ural language questions. In addition to only showing the result set to
end users, our system also performs further analytics on the result set
in order to help users to obtain deeper insights into the data. We have
applied TR Discover to Thomson Reuters datasets in the Life Sciences
and the Legal domains.

Keywords: Natural Language Interface, Question Answering, Feature-
based Grammar, Auto-Suggestion, Analytics

1 Introduction and Motivation

Imagine you are a non-technical domain expert (e.g., a journalist or patent at-
torney) or generally interested in a question that could be answered given the
vast amount of semantic web data we have. For example, you are asking yourself
how many drugs the company Pfizer currently has under development and which
diseases they are currently focusing on. A keyword based search will not give you
an answer, but just a list of links to documents. One could learn how to query a
relational database or a triple store, but that would require learning the corre-
sponding query languages. Therefore, one question would be: Can we enable
non-experts to query a knowledge base using their own words (i.e.,
natural language), which can be understood by a computer system in
order to retrieve the exact results the users are looking for?



2 Dezhao Song, Frank Schilder, Charese Smiley, Chris Brew et al.

Furthermore, given a dataset, do users always know what types of questions
they can ask? On the one hand, users may not know what types of entities are in
the data. Does the underlying dataset cover companies, music, books, or drugs?
Without knowing such information, it would be difficult for users to even start
formulating their questions. On the other hand, by knowing the types of entities,
they may not know what query conditions they can put on those entities. As-
suming a pharmaceutical researcher wants to know more about drugs, do they
know if they can ask for drugs for a particular disease, drugs using certain tech-
nologies, drugs from one or more specific companies, and so on? Rather than
letting users struggle to formulate their own natural language ques-
tions, a mechanism that could guide them to build questions that are
likely answerable by the underlying data would be extremely helpful.

Presenting a result set to users is the first step. With the query results, users
often times still need to perform various types of analyses on their own to really
understand the data. For example, assuming a patent attorney asks “show me
patents filed in China” and is presented with a huge result set of patents, what
could the patent attorney learn from this? Is she going to know the most active
company filing patents? Can she compare different companies/organizations by
their patent filing amount? As a non-technical user, it may indeed take some
time to find the right tool and to analyze the data in order to derive further
insights. Thus, another important aspect would be: In addition to simply
showing the results of a query, can the system perform some analysis
on the results in order to provide some insights to the users?

Our system, TR Discover, is designed as an intuitive interface between non-
technical users and the underlying data. With TR Discover, users write ques-
tions in natural language which are then mapped into a logic-based intermediate
language via a feature-based grammar with full formal semantics. We develop
an auto-suggest mechanism that steers the user towards logically well-formed
questions that are likely to generate useful answers from the available data.
Next, the logical representation of a natural language question is further trans-
lated into an executable query (e.g., SPARQL or SQL) thereby allowing the
system to use robust existing querying technologies. Finally, our system gen-
erates various types of analytics in order to help users to more easily gain
insights into the data. Overall, TR Discover enjoys both the advantages of
keyword-based search and database query systems by allowing domain experts
but non-technical users to use natural language which they already know while
retaining precision by mapping from the logical formalism to the query lan-
guage and generating useful structured analytics. TR Discover is available at
http://discover.cortellislabs.com:9000.

2 Using the TR Discover System

In this section, we present use cases for TR Discover. Due to licensing issues,
our online demo only supports questions for our Life Sciences dataset. However,
if selected into the second round, we will also demonstrate the system on our



TR Discover: Querying Interlinked Datasets with Natural Language 3

Legal dataset using a local laptop. Our Life Sciences dataset, Cortellis, targets
users in the Pharmaceutical industry. This dataset covers a variety of domains,
including Life Sciences, Intellectual Property, Legal and Finance. In terms of
entities, it contains data about drugs, companies, technologies, patents, etc.

First-time Users of TR Discover. Our first use case targets first-time
users of TR Discover or users with limited knowledge of the underlying data.
This user, User A, may be interested in broad, exploratory questions; however,
due to lack of familiarity with the data, guidance (from our auto-suggest module,
Section 3) will be needed to help him build a valid question in order to explore the
underlying data. Figures 1(a)-1(c) demonstrate this question building process.
Assuming that User A starts by typing in d, drugs will then appear as a possible
completion. He can either continue typing drugs or select it from the drop down
list on the user interface. Upon selection, suggested continuations to the current
question segment, such as using and targeting, are then provided to User A.
Suppose our user is interested in exploring drugs that utilize certain technologies
and thus selects using. In this case, specific technologies instances like Small
molecule therapeutic and Biological therapeutic are offered as suggestions. User A
can then select Small molecule therapeutic to build the valid question, drugs using
Small molecule therapeutic thereby retrieving answers from our data stores along
with the corresponding analytics (Figure 1(d)). In addition, users can also click
the “DrugID” (i.e., the values of the first column in the result area) to examine
similar drugs of a given drug as shown in Figure 1(e). Such drug similarity is
computed based upon their different attributes, e.g., technologies used, diseases
targeted, etc. The goal here is to help end users (e.g., pharmaceutical researchers)
to gain further insights into the data.

Expert Users. The second use case targets expert professional users (e.g.,
medical professionals, financial analysts, or patent officers). This user, User B,
understands the domain, and has specific questions in mind that may require
material from multiple slices of data. She need not be concerned with how the
data is partitioned across database tables because she is sheltered from this level
of implementation detail. Suppose User B works for a pharmaceutical company
and is interested in searching for patents relevant to a particular line of drug
development. Guided by our structured auto-suggest, she could pose the detailed
question, patents filed by companies developing drugs targeting PDE 4 inhibitor
using Small molecule therapeutic that have already been launched. Our system
returns 12 patents for this question and from the generated analytics (Figure
2), she can immediately see a general view of the competitive field. User B can
then drill further into the patents, and begin to develop a strategy that navigates
around potential infringements of her competitors’ protected rights, for example.

The Legal Dataset. Although we cannot release this dataset as part of the
online demo due to licensing issues, we plan to demonstrate TR Discover on this
dataset during the conference on a local laptop. This dataset consists of more
than 11 million legal cases, attorneys, law firms, judges, etc. Here, users may be
interested in legal cases in a specific location or on a specific legal topic. Users



4 Dezhao Song, Frank Schilder, Charese Smiley, Chris Brew et al.

(a) “d” is typed (b) “drugs” is se-
lected and sugges-
tions are provided

(c) “using” is picked
and “Small molecule
therapeutic” can be
chosen to complete a
question

(d) Query Results and Analytics (e)

Fig. 1. Use Case: First-time Users of TR Discover

(e.g., attorneys) may also be interested in the cases associated with a certain
judge. We list a few sample questions below supported by our data:

– Cases tried in Minnesota
– Law firms representing cases tried in Minnesota containing headnotes on the

topic of Criminal Law
– Cases presided over by Hon. Jane Doe

3 System Description

Question Understanding. In TR Discover, we parse natural language ques-
tions by adopting a feature-based context-free grammar (FCFG). Our FCFG
consists of a set of grammar rules that are used to understand the syntactic struc-
ture of the questions. The vast majority of these rules are domain-independent,
and as such can be re-used when moving to a new domain. As shown below, G1
- G3 are a few sample grammar rules. Here, G3 indicates that a verb phrase
(VP) may contain a verb (V ) followed by a noun phrase (NP).

G1: NP → (N’)



TR Discover: Querying Interlinked Datasets with Natural Language 5

Fig. 2. Analytics for Complex Question from Professional Users

G2: NP→ NP VP
G3: VP → V NP
L1: N[type=patent, num=pl, sem=<λx.patent(x)>] → ’patents’
L2: V[type=[patent,org,file], sem=<λX x.X(λy.file org patent(y,x))>, NUM=?n] → ’filed by’
L3: V[type=[drug,molecule,target], NUM=?n] → ’targeting’

The lexicon is another component of our FCFG. Each lexical entry contains a
variety of domain-specific semantic features which are used to restrict the number
of parses that a natural language question may have. In the above example, L1
represents the lexical entry for patents, and specifies its type and semantic
information, sem. Unlike nouns (L1 ), the type of verbs (L2 and L3 ) specifies
both the potential subject-type and object-type, and the predicate name, which
helps to filter out nonsensical questions like patents developed by Anticancer.

Auto-suggest. Left on their own, users may not know how to begin formu-
lating questions for TR Discover. Therefore our system provides suggestions in
order to help users to build questions that are likely to be answerable. Unlike
Google’s auto-completion that is based on query logs, our auto-suggest mecha-
nism provides suggestions computed based upon the entities and their relation-
ships in the dataset and by utilizing the linguistic constraints in our grammar.

We rank the suggestions based upon statistics extracted from an RDF graph.
Each node in the RDF graph represents a lexical entry (i.e., a potential sugges-
tion), including entities (e.g., specific drugs, drug targets, diseases, companies,
and patents), predicates (e.g., developed by and filed by), and generic types (e.g.,
Drug, Company, Technology, etc.). The ‘popularity’ (i.e., ranking score) of a
node is defined as the number of relationships it is involved in. For example, if a
company filed 10 patents and is also involved in 20 lawsuits, then its popularity
will be 30. Our current ranking is computed based only upon the data; in future
work, it may be possible to tune the system’s behavior to a particular individual
user by mining our query logs for similar queries previously made by that user.

FOL Translation and Query Execution. Given a completed natural lan-
guage question, our system first parses it into a First Order Logic representation
(FOL). The FOL of a natural language question is further translated to other
executable queries (e.g., SPARQL and SQL). This intermediate logical repre-
sentation provides us the flexibility to develop different query translators for
various types of data stores. There are two sub-steps for translating an FOL to
SPARQL/SQL. We first parse the FOL into a parse tree according to an FOL



6 Dezhao Song, Frank Schilder, Charese Smiley, Chris Brew et al.

parser, implemented with ANTLR [1]. This FOL parse tree is then translated
to executable queries. Finally, the translated queries are executed against their
corresponding data stores, i.e., a relational database for SQL queries and a Jena
TDB triple store [2] for SPARQL queries.

The following example demonstrates the process of understanding a natural
language question and translating it to a SQL and SPARQL query via FOL:

Natural Language Question: Patents filed by Pfizer
FOL: all x.(patent(x) → (file org patent(id01,x) & type(id01,Company) & label(id01,Pfizer)))
SQL Query: select patent.* from patent where patent.filed by = ‘Pfizer’
SPARQL Query:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX example: <http://www.example.com#>

select ?x
where {
?id01 rdfs:label ‘Pfizer’.
?id01 rdf:type example:Company .
?x rdf:type example:Patent .
?x example:filed by ?id01 .
}

Analytics. We provide an overview of the result set with descriptive analyt-
ics. For instance, for the question “show me all drugs developed by Pfizer Inc”, we
show the distribution of the technologies used by Pfizer’s drugs. In addition, we
perform named entity recognition (NER), using the Stanford CoreNLP toolkit
[3], on the Reuters News Archive (RNA). There are about 14 million documents
and the NER is done in a distributed environment using Apache Spark. The
entire process took roughly 48 hours and discovered about 280 million entities.

As a second step, we ran an open-source sentiment analysis tool over the
entire corpus [4]. Given an entity from the NER process, we retrieve documents
from RNA that contain this entity. For each document, we then find all sentences
that contain this entity and perform sentiment analysis on each of the sentences.
The outcome for each sentence could be: Positive, Neutral, or Negative. Finally,
we determine the overall sentiment of this document on the given entity by
majority vote on the sentence-level results. By linking the recognized companies
to those in our database, we show the frequency count of these companies and
how their sentiment analysis results change over time. This information may
provide further insights to users in order to support their own analyses.

4 Conclusion and Future Work

TR Discover was designed with non-technical information professionals in mind
in order to allow them fast and effective access to large-scale interlinked datasets.
Going beyond keyword-based search, TR Discover produces precise result sets
and generates analytics for natural language questions asked by information
professionals, such as journalists or patent lawyers. Rather than asking users to
provide an entire question on their own, TR Discover provides suggestions (i.e.,
auto-suggest) in order to facilitate this question building process. Given a com-
pleted natural language question, TR Discover first parses it into its First Order



TR Discover: Querying Interlinked Datasets with Natural Language 7

Logic (FOL) representation, by using a feature-based grammar with full formal
semantics derived from interlinked datasets. By further translating the FOL
representation of a natural language question into different executable queries
(SPARQL and SQL), our system retrieves answers from the underlying data
stores and generates corresponding analytics for the results. In future work, we
plan to develop personalized auto-suggestion by using user query logs, and apply
TR Discover on more and larger datasets to examine the response time of its
various components. Furthermore, it would be interesting to seek feedback from
real users on the performance and usability of our system. Finally, we plan to
better handle synonyms, e.g., “medicines” for “drugs’.

References

1. Bovet, J., Parr, T.: Antlrworks: an ANTLR grammar development environment.
Software: Practice and Experience 38(12), 1305–1332 (2008)

2. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the 13th
international conference on World Wide Web - Alternate Track Papers & Posters.
pp. 74–83 (2004)

3. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics. pp. 55–60
(2014)

4. Narayanan, V., Arora, I., Bhatia, A.: Fast and accurate sentiment classification
using an enhanced naive bayes model. CoRR abs/1305.6143 (2013)

5. Song, D., Schilder, F., Smiley, C., Brew, C., Zielund, T., Bretz, H., Martin, R., Dale,
C., Duprey, J., Miller, T., Harrison, J.: TR Discover: A natural language question
answering system for interlinked datasets. In: The 14th International Semantic Web
Conference (2015)

Appendix: Criteria

Minimal requirements
–The application has to be an end-user application, i.e. an application that pro-
vides a practical value to general Web users or, if this is not the case, at least
to domain experts. It should show-case functionalities that the use of seman-
tic web technologies can bring to an application. The WebApp is available to
general Web users and the auto-suggest makes it easy to construct questions.
Domain experts, however, will benefit the most from the application because they
can explore specific datasets based on their domain knowledge and discover new
connections between various datasets.
–The information sources used should be under diverse ownership or control;
should be heterogeneous (syntactically, structurally, and semantically); and should
contain substantial quantities of real world data (i.e. not toy examples). Our on-
line demo covers pharmaceutical data, company information, patents (but we
will demonstrate using extended datasets at the conference). By linking company



8 Dezhao Song, Frank Schilder, Charese Smiley, Chris Brew et al.

information from pharmaceutical companies to patents or legal cases we show
how various heterogeneous data sets can be interlinked. We cover a substantial
amount of entities and triples. The pharmaceutical data set contains 1 million
entities and 12 million triples and the legal data set consists of 11 million cases.
–The meaning of data has to play a central role. Meaning must be represented
using Semantic Web technologies; Data must be manipulated/processed in inter-
esting ways to derive useful information; and this semantic information process-
ing has to play a central role in achieving things that alternative technologies
cannot do as well, or at all; Since the natural language questions are parsed and
translated into a logical representation, we rely heavily on the meaning of the
data and the way users ask for information. The questions can be translated into
any kind of query language including SPARQL and the result sets are complex
analytics rather than a simple list of entities.

Additional Desirable Features
–The application provides an attractive and functional Web interface (for human
users) The WebApp is easy to use and allows users to navigate through various
result sets.
–The application should be scalable (in terms of the amount of data used and
in terms of distributed components working together). Ideally, the application
should use all data that is currently published on the Semantic Web. We used
mainly in-house data, but also connected to DrugBank, an open dataset. Although
the current focus is not the entire Semantic Web content, we could expand the
grammar and translation modules to cover these datasets as well.
–Rigorous evaluations have taken place that demonstrate the benefits of seman-
tic technologies, or validate the results obtained. We carried out a thorough
evaluation of all components in terms of run time and performance [5].
–Novelty, in applying semantic technology to a domain or task that have not
been considered before Using natural language questions allows for easy access
to complex data sets and the ability to construct complicated questions brings
together multiple data sets.
–Functionality is different from or goes beyond pure information retrieval In ad-
dition to retrieving the result set, we generate interesting analytics (descriptive
and comparative) on the fly. We also incorporated sentiment analysis into the
result set for companies mentioned in the news.
–Contextual information is used for ratings or rankings The frequency of the
entities is used for ranking the suggestions for the auto-suggest.
–Multimedia documents are used in some way We deployed charts and maps for
representing analytics.
–The results should be as accurate as possible (e.g. use a ranking of results ac-
cording to context) Since we retrieve the complete set and compute aggregate
information, results are very accurate.
–There is support for multiple languages and accessibility on a range of de-
vices We currently only support English. In addition to traditional computers,
the WebApp also runs on Android tablets and allows users to use Google voice
recognition as an input method.


