
Enabling Live Exploration on The Graph of
Things ?

Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Quoc Hung Ngo, Tuan Tran Nhat,
and Manfred Hauswirth

INSIGHT Centre for Data Analytics
National University of Ireland, Galway.

Abstract. The Internet of Things(IoT) with billions of connected de-
vices has been generating enormous amount data of data every hour.
Connecting every data item generated by IoT to the rest of the digital
world to turn this data into meaningful actions will create new capa-
bilities, richer experiences, and unprecedented economic opportunity for
businesses, individuals, and countries. However, providing an integrated
view for exploring and querying such data at real-time is extremely chal-
lenging due to its Big Data natures: big volume, fast real-time update
and messy data sources. To address this challenge we provides a unified
integrated and live view for heterogeneous IoT data sources using Linked
Data, , called the Graph Of Things(GoT). GoT is backed by a scalable
and elastic software stack to deal with billion records of historical and
static data sets in conjunction with millions of triples being fetched and
enriched to connect GoT per hour at realtime. GoT makes hundreds of
thousand of IoT stream data sources available as a SPARQL endpoint
and continuous query channel via the web socket protocol that enables
us to create a live explorer of GoT at http://graphofthings.org/ with
just HTML and Javascript.

Keywords: Internet of things, Graph of things, Linked Stream Data

1 Introduction

IDC reports that 90 per cent of all the data in the world has been generated
over the last two years. In fact, IDC projects that by 2020 the digital universe
will reach 40 zettabytes (ZB), which is 40 trillion GB of data or 5,200 GB of
data for every person on Earth. Majority of this data will be contributed by
billions of devices connected to the Internet of Things (IoT). Connecting ev-
ery data items generated by IoT to the rest of the digital world to turn this
data into meaningful actions will create new capabilities, richer experiences, and

? This publication has emanated from research supported in part by a research grant
from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 and
by Irish Research Council under Grant No. GOIPD/2013/104 and European Com-
mission under Grant No. FP7-287305 (OpenIoT) and Grant No. FP7-287661 (GAM-
BAS) and Grant No. FP7-ICT-608662 (VITAL)

2 D. Le-Phuoc, H. Nguyen, H. Ngo, T. Tran, M. Hauswirth

unprecedented economic opportunity for businesses, individuals, and countries.
However, deriving trends, patterns, outliers, and unanticipated relationships in
such enormous amount of dynamic data with unprecedented speed and adapt-
ability is extremely challenging. Because as on the Web, access to and integration
of information from large numbers of heterogeneous IoT streaming sources un-
der diverse ownership and control is a resource-intensive and cumbersome task
without proper support. Such streaming data sources generated from data ac-
quisition infrastructures of Smart Cities, Social network application, medical
sensors, etc are still dominated by static data silos, large warehousing systems
that are often unmanageable and rudimentary user interaction interfaces which
trade intuitiveness for completeness. None of these streams of data can be im-
mediately applied into an application as they first need to be cleaned and made
ready for processing.

To answer this need, Linked Stream Data [3] employs Linked Data model to
provide graph as the basic representation for stream data together with static
data. The effective exploitation of Linked Stream Data from multiple sources
requires an infrastructure that supports the intense effort of enrichment, link-
age, and correlation of data stream with very large static data collections, e.g,
LinkedGeoData and DBpedia, while at the same time combining the result into
increasingly complex data objects representative of realistic models of the world.
Therefore, in this paper, we present an scalable and elastic approach for explor-
ing and querying billions of dynamic IoT data points in conjunction with static
data sets of Linked Data Cloud. This approach provides an integrated architec-
ture to collect and curate useful RDF facts from IoT raw data create a graph
that plays the role as a unified and live view of data objects about ”Things”,
called the Graph of Things (GoT). Our back-end data management system sup-
ports the ingestion of million data points per second while it is still able to query
live data while being indexed to the persistent distributed storage which stores
billions-triple datasets of historical data as well as static datasets. The system
exposes a web friendly interface to query GoT via HTTP and web socket us-
ing SPARQL-like query language. As a proof of concept, we also demonstrate
how to build an web application to explore and visualise a pilot GoT dataset
at near-realtime using such interface with Javascript. This pilot GoT dataset
contains billion triples and millions of triples being updated live every second
from millions of sensor data sources (see bellow).

2 The Graph of Things
The Graph of Things (GoT) is an on-going effort of consuming and curating
stream data sources of IoT to provide simple interface to filter, aggregate, en-
rich, and analyze graph-based patterns to visualize business in real-time, de-
tect urgent situations, and automate immediate actions. In current pilot version
hosted at http://graphofthings.org/, GoT is composed from public stream
data sources such as weather, traffic, flight , social media from all continents.
These data sources are in a wide range data formats such as XML, HTML, JSON,
text, binary. They are consumed and curated in LSM’s wrappers to add mean-
ingful links to GoT. The data is fetched or pushed into the system via several

Enabling The Graph of Things 3

protocols such as HTTP, FTP, TCP/IP, web sockets, MQTT. Along with such
stream data having been archived since July, 2014, we also transform historical
NOAA’s weather data1 of over 23.000 sensors for last 100 years (7.5 billion raw
data records in text format). For social media, we also extracted RDF-based
named entities from Twitter stream channels and RSS feeds of well known news
papers such as BBC, CNN, Yahoo! News. The summary of such stream data
sources consumed until now are presented in Table 1.

Dataset Size of Archive Period of Archive Update Frequency

NOAA 177B Since 1901 3 hours

LSM [2] 2B Since July, 2014 2 hours

Tweet streams 756M Since July, 2014 1 second

RSS feeds 13M Since July, 2014 1 hour

Flight Data 62M Since July, 2014 5 minutes

Traffic Data 63M Since July, 2014 1 second

Table 1: Summary of stream datasets until 19/09/2014

During the data curation phase, we use several data sets from Linked Data
Cloud to create meaningful links to them. These links plays the pivotal roles for
correlating stream data sources, for instances, find the flights departing the same
city is currently in the same airspace of a country. For spatial context, we import
LinkedGeoData (20 billion triples) and Geonames datasets(61 million triples).
To enrich the named entities of social media stream, we also import YAGO2
(64 million triples) and DBpedia (580 million triples) datasets from which such
entities are linked to.

3 Architectural Design

The architecture of managing GoT follows the layered architecture of our Linked
Stream Middleware(LSM) [2] as shown in Figure 1. In the Data Acquisition
Layer, we plug a wide range of wrappers to transform and curate stream data
from variety of formats, protocols and device platforms to link streaming triples
to the GoT layer which stores in distributed persistent partitions together with
distributed in-memory storages of the processing cluster. The GoT layer provides
interfaces for two query processing engines, i.e., SPARQL engine and CQELS
engine, to enable the application developers to query data via SPARQL endpoint
or Stream Subscribing Chanel in the Application layer.

In this architecture, the stream data of GoT is collected in the form of data
streams, i.e. information is produced in real-time. However, traditionally, on
the ”consuming” side, the dominant processing paradigm is still batch-based,
i.e., the complete data is first generated, then stored in a database and then
the database is used for modelling and analysis, neglecting the dynamicity of
the information and causing significant delays. To reduce the such delays, in
our architecture, data will be generated on demand and immediately routed to
where it will be needed and will be processed as soon as it becomes available as
shown in Figure 2a. The processing flow of our architecture moves from a batch

1
http://www.ncdc.noaa.gov/

4 D. Le-Phuoc, H. Nguyen, H. Ngo, T. Tran, M. Hauswirth

SPARQL'Engine' CQELS'Engine'
Gr
ap
h'
of
'T
hi
ng
s'

Da
ta
'a
cc
es
s'

Ap
pl
ic
a;

on
'

Da
ta
'a
cq
ui
si;

on
'

SPARQL'Endpoint' Stream'Subscribing'Channel'

Fig. 1: Layered Architecture

to a near-real-time processing paradigm using parallel processing infrastructures
like Storm2, Hadoop3, HBase 4 and Blur 5. For stream data ingestion we use
Storm to process and filter them at realtime using declarative stream processing
pipelines supported by CQELS Cloud [1, 5]. The newly updated data will be
maintained in a live view to be merged with precomputed views or indexes
stored in persistent storages. When the data in the live views reaches to certain
threshold it will be partitioned and batched to store in corresponding partitions
with indexes to be retrieved in parallel fashion. Such data is partitioned based
on their characteristics and graph patterns. Free text data will be stored and
partitioned by Blur. The time series data is splited and stored in our modified
version of Open TSDB6 backed by HBase. The static datasets is partitioned by
the graph partitioning algorithm in [4].

The above processing flow is parallelized using CQELS Cloud parallel execu-
tion framework [1, 5] in Figure 2b. This framework is used to build highly parallel
execution pipelines of SPARQL Engine and CQELS Engine. The execution of
such pipelines is scheduled and coordinated by Storm and HBase’s co-ordination
services, thus, the elasticity of our system is powered by Storm and HBase.

4 System’s Deployment
As GoT is a Linked Dataset, we make GoT accessible via SPARQL endpoint
at http://graphofthings.org/sparql/. However, this SPARQL endpoint support

2
https://storm.incubator.apache.org/

3
http://hadoop.apache.org/

4
http://hbase.apache.org/

5
https://incubator.apache.org/blur/

6
http://opentsdb.net/

Enabling The Graph of Things 5

Stream Graph Data	
In-memory continuous

processing	

Pre-computed views/indexes Persistent graph : static &
historical stream data

Merged
view

 GoT Live View

S
S	Storm

Hadoop+HBase+Blur

(a) Data Consuming

HBMaster)

Nimbus)

Zookeeper)

Zookeeper)

Gl
ob

al
)S
ch
ed

ul
er
)

HRegionServer)

Operator(Containers(

Supervisor)

HDFS)DataNode)

HBase)client)

Lo
ca
l)s
ch
ed

ul
er
)

HRegionServer)

Supervisor)

HDFS)DataNode)

Hbase)Client)

Lo
ca
l)s
ch
ed

ul
er
)

Execu1on(Coordinator(

Zo
ok
ee
pe

r)c
lu
st
er
)

HBase&

Storm&

(b) Parallel Execution

Fig. 2: Scalable and Elastic Data Processing Framework

more powerful SPARQL query language than SPARQL 1.1. For spatial compu-
tation, it supports spatial extension for SPARQL query via Jena Spatial built-in
function which are mapped to spatial computation functions provided by Blur.
For query graph pattern associated with time series data, we also support tem-
poral extension for SPARQL which is backed by our modified version of Open
TSDB. On top of that, full text search is supported by fuzzy matching syntaxes
of Lucence7 which is processed by Blur. Following is an example of a SPARQL
query over GoT using spatial, temporal and free-text search patterns.

PREFIX rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>
PREFIX text: <http :// jena.apache.org/text#>
PREFIX spatial: <http :// jena.apache.org/spatial#>
PREFIX temporal: <http :// jena.apache.org/temporal#>
SELECT *
{?loc spatial:withinCircle (67.033 -178.917 10.0 ’miles ’ 100).
?loc <http :// www.w3.org /2003/01/ geo/wgs84_pos#lat > ?lat.
?loc <http :// www.w3.org /2003/01/ geo/wgs84_pos#long > ?long.
?sensor <http ://www.loa -cnr.it/ontologies/DUL.owl#hasLocation > ?loc.
?sensor temporal:sensors (’1971/01/01 -03:00 ’ ’1971/01/01 -09:00 ’ ’.
?sensor text:query (rdfs:label ’Birmingham ’).}

To support continuous queries over stream data of GoT, a Stream Subscrib-
ing Channel is given via web socket protocol at ws://graphofthings.org/cqels/.
Via this channel, any client can pose continuous queries using CQELS query
language [1] over stream data to get stream notification of interest. For example,
a browser can use simple java script code to send a CQELS query (in text string)
to get location updates of all air planes of an airline within a spatial boundary,
e.g. Europe’s airspace. This channel is especially useful for realtime web/mo-
bile application that use Model-Controller-View (MVC) front-end programming
frameworks and AngularJS, Backbone.js as the updates from streams of GoT
can automatically triggered the relevant visualisation widgets of without having
to interfere other parts of the applications (see more details in Section 5)

The underlying setup to serve the data described in Section 2 is a cluster of 7
servers running on share network backbone with 10Gbps bandwidth. Each server
has following configuration: 2x E5-2609 V2 Intel Quad-Core Xeon 2.5GHz 10MB

7
http://lucene.apache.org/core/

6 D. Le-Phuoc, H. Nguyen, H. Ngo, T. Tran, M. Hauswirth

Cache, Hard Drive 3x 2TB Enterprise Class SAS2 6Gb/s 7200RPM - 3.5” on
RAID 0, Memory 32GB 1600MHz DDR3 ECC Reg w/Parity DIMM Dual Rank.
One serves is dedicated as front-end server and coordinating the cluster, other
6 servers are used to stored data as and run as processing slaves. Our current
deployment uses Zookeeper 3.4.5-cdh4.2, Storm 0.9.2, Blur 0.2, OpenTSDB 2.0
and HBase 0.98.4. A cluster includes 1 master node which has Nimbus, Zookeeper
and Blur and HBase master installed. The other 6 nodes are within the same
administrative domain play as Blur and HBase slaves.

5 Demonstration Features

We demonstrate the capability of managing big volume of data as well high
updating throughput by walking through the process of building the live explorer
of GoT using HTML and Javascript at http://graphofthings.org/. The GoT
Explorer starts with a Live View that summarises ”what’s been happening in
last X minutes”, default value of X is 60 minutes, X can be changed by the
slider on the left hand side as illustrated in Figure 3. The HTML page will call
SPARQL queries corresponding to the map area and the time range of interest to
fetch back ground information, i.e, locations and types and updating summaries
of stream data sources that have readings in X minutes, to render information on
the map. To keep the HTML page updated with the data streamed from relevant
stream data sources, a Javascript agent of the HTML page register respective
CQELS queries to update the summary of live information in the Live Update
Dash board overlayered on the bottom of the map.

Fig. 3: Live View

To have a quick comparison on historical data of a selected set of stream
data sources, e.g, sensor measurements, the GoT explorer provides a 3D layout
of live thumbnails as shown in Figure 4. A live thumbnail is live a snapshot of
the stream data sources that are fetched via SPARQL Endpoint. The 3D layout

Enabling The Graph of Things 7

Fig. 4: 3D layout of live thumbnails

can display much more information that the usual 2D one. For example, the
sphere layout in the Figure 4 can render much more thumbnail charts. This is
very useful when exploring and correlating millions of stream data sources.

Fig. 5: Live Animation of Flights over Europe’s airspace

By using temporal SPARQL query patterns, we can create animated visual-
isations of from time series data of interest. For instance, the Figure 5 plays live
animation of flights over Europe’s airspace.

References

1. D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive
approach for unified processing of linked streams and linked data. In Proceedings of
10th International Semantic Web Conference, pages 370–388, 2011.

2. D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth. A middleware
framework for scalable management of linked streams. Web Semantics: Science,
Services and Agents on the World Wide Web, 0(0), 2012.

8 D. Le-Phuoc, H. Nguyen, H. Ngo, T. Tran, M. Hauswirth

3. D. Le-Phuoc, J. Xavier Parreira, and M. Hauswirth. Linked stream data processing.
In T. Eiter and T. Krennwallner, editors, Reasoning Web. Semantic Technologies
for Advanced Query Answering, volume 7487 of Lecture Notes in Computer Science,
pages 245–289. Springer Berlin Heidelberg, 2012.

4. K. Lee and L. Liu. Scaling queries over big rdf graphs with semantic hash parti-
tioning. Proc. VLDB Endow., 6(14):1894–1905, Sept. 2013.

5. D. L. Phuoc, H. N. M. Quoc, C. L. Van, and M. Hauswirth. Elastic and scalable
processing of linked stream data in the cloud. In The Semantic Web - ISWC 2013,
pages 280–297, 2013.

Appendix: Meeting the The Requirements of Big Data
Track

Minimal requirements
√

Data Volume. Until 19/09/2014, GoT dataset contains more than 200 billion
triples. Among them stream data contributes 180 billion triples and 21 billon
triples of static datasets are loaded.√

Data Variety. The original data sources of GoT are in various formats,
e.g, XML, HTML, JSON, binary. The data is has some certain structures to
transform and enrich to RDF but RDF-based entities are extracted unstruc-
tured Tweet streams and RSS feeds using natural language processing tools.
The pluggable wrapper mechanism of our Linked Stream middleware provides
easy mechanism for plugging any stream data sources. Current version of GoT
feeds data coming from more than 120.000 live stream sources under control of
more than 70 providers.√

Data Velocity. The stream part of GoT has millions of updates per hour.
The system is incrementally indexing 1.2 billion triples per month to store in the
persistent storage of the cluster. The back-end system can consume millions of
triples per second on a cloud infrastructure, it can adapt to the fluctuate stream
speed. Its scalability and elasticity is tested in [1, 5].

Additional Desirable Features
√

Usability. The system provides a SPARQL Endpoint and a Stream Sub-
scribing Chanel which can be used posed complicated SPARQL queries as well
as continuous queries in CQELS language. The query languages support spatial,
temporal and free text search features over GOT data. The Endpoint and the
Chanel supports JSON data format to make it easier to parse on Web browsers
or mobile clients. Their usability is demonstrated via the live GoT Explorer in
Section 5.√

Scalability. The system is elastically scalable on the cluster of 7 servers. Its
underlying processing system, CQELS Cloud [1, 5], is tested to scale perfectly
on 32 processing nodes.√

Near-real time processing capability. The system consumes, indexes
incoming stream data at near-real time. The data can be queried as soon as the
data transformed and stream to processing bus.

