
1

Fusepool Linked Datapool for Technology Intelligence

Michael Kaschesky1*, Reto Bachmann-Gmür1, Guillaume Bouchard5, Stephane
Gamard3, Anton Heijs4, Michael Luggen1, Tamás Prajczer2, and Luigi Selmi1

1 Bern University of Applied Sciences, E-Government Institute, Bern, Switzerland
{firstname.lastname}@bfh.ch

2 Geox KFT, Budapest, Hungary
prajczer@geox.hu

3Searchbox SA, Lausanne, Switzerland
stephane.gamard@searchbox.com

4Treparel Information Solutions B.V., Delft, Netherlands
anton@treparel.com

5Xerox Research Europe, Machine-Learning Group, Meylan, France
guillaume.bouchard@xrce.xerox.com

Abstract. Fusepool applications for technology intelligence merge open data
from millions of patents, publications, and research tenders making it available
as keyword-searchable linked data. The open-source Fusepool data and soft-
ware infrastructure separates the data, its processors, and the user interfaces
from each other enabling users to transform and enrich their own data as linked
data for searching and interlinking internal and external sources. Fusepool inte-
grates many Apache projects and makes it easy for developers to build new
apps using the ready-made OSGi Fusepool archetypes. The JavaScript client
provides a semantic REST endpoint to be used alongside the SPARQL end-
point. Fusepool data undergoes a series of data extraction and refinement steps
that remove ambiguity and make data reusable. As a result, the exploitation by
app developers and the management of data becomes more efficient.

Keywords: technology intelligence, semantic search, linked data, fusepool

1 Introduction

Fusepool provides an open-source integrated data and software infrastructure that
separates the data, its processors, and the user interfaces from each other. The Fuse-
pool end user applications (e.g. PartnerMatch, PatentExplorer, FundingFinder,
UserFeedback, PublicationExplorer, and ExpertMatch) integrate large amounts of
diverse and heterogeneous information sources from different owners (e.g. EPO,
PubMed, CORDIS) while preserving the meaning of the different information
sources using RDF as the common data model and shared vocabularies (e.g. PatEx-
pert, Bibo, FOAF. SIOC). Fusepool data undergoes a series of data extraction and
refinement steps that remove ambiguity and make data reusable. As a result, exploi-
tation by app developers and the management of data becomes more efficient.

2

2 System requirements specification and evaluation

The Fusepool team developed the system requirements and applications and their on-
going adaptation in close cooperation with end users and domain experts. Based on
the living lab approach to software development involving 15 end user organizations,
rigorous evaluations were and are done to demonstrate and validate the results.
Because of their involvement, end users have confirmed the clear commercial poten-
tial of Fusepool applications (e.g. PartnerMatch, PatentExplorer, FundingFinder,
UserFeedback, PublicationExplorer, and ExpertMatch).

2.1 Identification and definition of Fusepool user case studies and use cases

During the demos and presentations of Fusepool applications, the stakeholders inter-
actively participated by asking clarification questions and providing their views and
assessment. In addition, their responses in the applications for the Open Call, we
evaluated all responses from the 18 shortlisted applicants, which together provided 61
user stories on the application scenarios and the questions they address.

The four application scenarios that were already defined during the 1st Fusepool
User Workshop were defined as follows:

• PartnerMatch: How to find partners sharing similar/complementary traits?
• PatentExplorer: What is the trend and landscape of patents in my research field?
• FundingFinder: How to find and match call for tenders to my research interests?
• UserFeedback: How can input and feedback be used to optimize search results?
• PublicationExplorer: How to find and match papers to my research interests?
• ExpertMatch: How to find and match experts in a given field of expertise?

Fusepool application scenarios have in common that they find information that is
best suited to address a specific user need. Hence, the use cases in each application
scenario can broadly be divided into the following three groups.

• Searching and retrieving information: In the simplest scenario, the user only
enters a search string describing the field of interest. The search engine uses the
search index of all information available in the datapool to identify and rank the
most relevant results based on a scoring algorithm.

• Limiting retrieved entities or retrieving related information for a result: The
user may refine the search results in two ways or a combination thereof. By click-
ing on one of the types of searched entities, only this type will be searched thereby
limiting the scope of searched content. Similarly, the user may click on one of the
types of retrieved entities, thereby limiting the scope of retrieved information.

• Providing feedback or annotations to search results: The user may ‘write’ back
to the datapool by adding personal annotations and customizations that can be
shared among multiple users. For example, a user can select items from a search
result list that are most relevant and trigger a classifier to calculate a classification
score and re-rank the results accordingly. The classifier can be stored for later re-
use.

3

 Examples of real user stories

“Searching partners for fitting into a project or collaboration is essential, for our internal
projects and for our SMEs. … Fusepool could help us to bring up new partners not in-
cluded in our network. An example is the Knowledge and Workflow Management for
Ports. We have been requested by one of our companies to help them to find technolo-
gies for increasing the efficiency in the value chain of Ports Management. We are using
our network contacts and also the access to the main databases of Spanish Association of
Science parks (SEIMED) in order to identify potential partners, technologies and also
patents that could be related.”

“FundingFinder and PartnerMatch will help our collaborators (and possibly other part-
ners) in their daily business with the clients (researchers, SME and industry). … Part-
nerMatch: help client to build a project consortium, complements existing tools and
network connections that we have utilized as part of our own core business (Enterprise
Europe Network and Ideal-ist network partner searches for instance). FundingFinder and
PartnerMatch are the most interesting and immediately applicable tools, as benchmark-
ing for our own Opportunity-Finder results.”

“To make the real world a testbed, we need to find the right technology for multi-source
air quality sensors and analysis since the use case is different from traditional solutions.
Fusepool might help targeting the right technology (patents), finding suitable partners,
and joining related EU projects. … The PartnerMatch usecase gives those Chinese com-
panies an easy portal to target the potential business partners. … We hope more than 20
companies from different sectors of China will join to use Fusepool.”

“PartnerMatch is surely the most interesting because it closely overlaps with our efforts
planned for the new member platform as described above. … [it] could support our high-
tech firms developing their products further with the help of other partners and funding
from external sources. It would enable them to invest in more riskier areas which they
would not be able to fund themselves due to the larger risks involved (medium term
research).”

“[We] want to make the newly developed diagnostic methods available to potential
partners in the pharmaceutical industry. These would be companies or institutes that
perform preclinical trials with animals for CNS drugs. … For example, when I have
developed and validated a battery of tests as above, I want to offer this accurate selection
of tests to the industries and for validation of CNS drugs (pre-clinical trials). For this I
need a tool that can tell me which pharmaceutical group works on the pathology this
battery of test targets and which CNS drugs they develop in relation to this/these pathol-
ogies identification of the company. Then I need to know who is the contact person for
pre-clinical testing of the drugs developed in this company…”

4

3 Component integration and data storage

The Fusepool platform scales in terms of integrated components based Java OSGi.1
Fusepool data sourcing and storage scale in terms of integrated data using common
data formats (such as RDF) and shared domain-specific vocabularies (such as PatEx-
pert for patents and Bibo for publications). Because of the reuse of shared vocabular-
ies, interlinking to data resources in the Linked Data Cloud, potentially reusing all
related data currently published on the Semantic Web. Data sourcing makes use
of dynamic data as its being published at the source (e.g. PubMed for publications).

3.1 Fusepool platform and enhancers

The Fusepool platform supports supports the established Linked Data standards and
best practices. It does so by relying on existing open source projects, notably Apache
Clerezza and Apache Stanbol. Clerezza is a service platform based on OSGi (Open
Services Gateway initiative), which provides a set of functionality for management of
semantically linked data accessible through RESTful Web Services and in a secured
way. Clerezza enables easy development of semantic web applications by providing
tools to manipulate RDF data, create RESTful Web Services and Renderlets using
ScalaServerPages. Stanbol enables the chaining of several semantic services, e.g. tag
extraction/suggestion, text completion in search fields, ‘smart’ content workflows
based on extracted entities, topics, etc. In addition, Apache Marmotta is investigated,
which provides an open implementation of a Linked Data Platform that can be used,
extended, and deployed easily by organizations wanting to publish Linked Data or
build custom applications on Linked Data.

Each enhancer uses the input data in a different way in order to perform its task,
but all share the same administrative interface, Java API and RESTful web service. A
file sent to an enhancer through one of these two APIs will be mapped into an object,
so called content item, to which all the enhancements will be attached in its metadata
field as RDF data. A series of enhancers can be put in chain to form data pipelines. In
this way the result of an enhancer can be used as an input to the following component.

Concerning component interoperability, while OSGi and adherence to good devel-
opment practices ensures interoperability of components running within the same
Java Virtual Machine (JVM) for interaction between applications running in different
environment the interaction is done via HTTP and ideally via interfaces designed
following the REST principles2. The Frontend components we contributed to Apache
Stanbol foster the development of components that qualify as semantic and RESTful.
This means that a client only needs a single service URI and understand the ontolo-
gies being able to fully use the provided services.

1 http://en.wikipedia.org/wiki/OSGi
2 REpresentational State Transfer (REST) is an architectural style, defined by Dr. Roy Fielding
2 REpresentational State Transfer (REST) is an architectural style, defined by Dr. Roy Fielding

in Architectural Styles and the Design of Network-based Software Architectures.

5

3.2 Fusepool content storage

Regarding interoperability of data resources, the Fusepool Platform implements the
Enhanced Content Store (ECS), a new storage component,3 which among other ad-
vantages provides better integration in the context of Linked Data than the original
Stanbol Contenthub. The new content store enables uploading of documents so that
both the document and their generated metadata can be dereferenced at persistent
HTTP URIs as well as the integration of data from remote sites. This data is indexed
locally and a copy of the triples is stored to allow fast queries but when users access
one of described resources they are pointed to the original location. This design
makes Fusepool a data service provider in the existing distributed linked data web and
not a closed data silo. RDF offers the following improvements: linked data resources,
structured and non-structured data accessible via a unified interface, access control
and semantic REST APIs can be used.

3.3 Fusepool user authentication and authorization

The chosen approach leverages existing security mechanisms built into the Java Plat-
form4 and some libraries like Apache Clerezza5. The Java security model is based on
a “sandbox” in which the code has limited and well defined access rights to resources
both within and outside the Java Virtual Machine (JVM). When Java applications are
run in secure mode at various points of their execution security checks might take
place, execution only continues if the code is executed with sufficient permissions,
otherwise a SecurityException is thrown.

The permissions system is very fine grained so that different operations can all
have dedicated permissions. However it is also possible to have more coarse-grained
high-level permissions and then have code sections which are executed as privileged
executed without permission check. These patterns allow system administrators to
more easily manage the permissions of users. For example if a user has the permis-
sions to send emails the administrator doesn’t need to additionally give the user the
right to access the network, the high level permission “Send Email” implies more fine
grained permissions like “Open Network Socket”.

Consistently with the design paradigms of the platform the users are described in
RDF. This security sensitive information is stored in a system graph. The system
graph has itself the most restrictive access control settings. In this system graph users
are mapped to roles and roles and users are matched to permission. The permissions
are described using the standard syntax to describe them as it is used in Java Policy
files6, For describing the users and roles standard ontologies like FOAF and SIOC are
used wherever possible.

3 The Fusepool Enhanced Content Store is available here:

https://github.com/fusepool/fusepool-ecs
4 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
5 http://clerezza.apache.org
6 http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html

6

4 Mapping data to RDF, entity extraction, and interlinking

Fusepool enhancers and bundles (e.g. NER, SMA, Interlinking, Smushing, KMX
bundle) provide functionality that goes beyond pure information retrieval. NER
provides domain-specific extraction and URI-generation of named entities detected
within the corpus of text content while SMA provides a fast and scalable way to de-
tect already known entities based on a dictionary of concepts and their URIs.

4.1 Automated transformation of data into RDF

Three RDFizers have been developed as Apache Stanbol enhancers to transform
documents from XML or CSV to RDF. The work has been organized in two subtasks.
Data mapping focuses on the transformations for all the files that were chosen as
source: patents from the MAREC corpus, PubMed articles and FP7 calls. RDFizers
focus on including such transformations into OSGi bundles in order to provide an
easy usage of those transformations within the platform. The first two transformations
were from XML to RDF/XML and have been developed as XSLT style sheets. The
FP7 calls, originally provided as CSV files, have been transformed into RDF using
SPARQL rules. Each subtask is described in the following paragraphs.

The design approach for URI/IRI patterns follows some of the best practices. In
cases where the identifiers that could be easily algorithmically constructed from the
data source or follow a common pattern, they were used directly in the pattern in or-
der to create predictable (resource-friendly) and human-friendly IRIs; unique identifi-
ers which were available directly in the documents e.g., patent identifiers, patent clas-
sifications, publication identifiers, funding call and topic identifiers. In other cases
where the occurrences of things or concepts cannot be absolutely differentiated from
one another, UUID values were generated and used in the IRI pattern.

4.2 Named entity recognition and disambiguation and co-reference resolution

Fusepool NER is a Java-based Apache Stanbol enhancer based on Stanford NER
that produces an RDF output containing the extracted entities from the input text. The
enhancer engine contains multiple NER instances, each instance is a separate module,
and therefore each module has its own configuration page inside Stanbol Configura-
tion Manager. It also means that different NER instances can be part of different en-
hancer chains. The enhancer consists of two main parts, initialization and production.

Fusepool SMA (String Matching Algorithm) is a Stanbol enhancer based on the
Aho-Corasick SMA that produces an RDF output containing the extracted entities
from the input text. SMA offers a more simple way for extracting information from
texts. The enhancer engine contains multiple SMA instances, each instance is a sepa-
rate module, and therefore each module has its own configuration page inside Stanbol
Configuration Manager so that different SMA instances can be part of different en-
hancer chains. The enhancer consists of two main parts, initialization and production.
The dictionary is stored in-memory in a hash table to make the lookup fast.

7

4.3 Information enrichment and interlinking

The result of an enhancement process for unstructured text or a transformation of a
semi-structured document into RDF is a collection of disconnected RDF triples. In
order to connect different representations of the same entity a reconciliation or inter-
linking task must be performed.

To start the interlinking some criteria must be defined for each entity type as to
when entities of that type qualify to be interlinked. The descriptions to be compared
must use the same or equivalent properties for which a mapping can be defined. The
comparison of the properties values is based on different well-known similarity func-
tions. The value of the comparison depends heavily on the quality of the data. If the
computed value is above a certain threshold it is assumed that the two URIs represent
the same entity. An identity relationship between two URIs is asserted using the
owl:sameAs property. As a consequence of this new information all the statements
about the entity found in the document can be asserted for the same entity in the
knowledge base by a reasoner. In the Fusepool platform the interlinking process is
provided by a component based on the Silk Link Discovery Framework. This compo-
nent compares an entity’s description, coming from enhancers or RDFizers, with enti-
ties stored in the ECS.

5 Keyword and faceted search for linked data and optimization

Fusepool applications (e.g. PartnerMatch, PatentExplorer, FundingFinder, UserFeed-
back, PublicationExplorer, and ExpertMatch) integrate the user’s contextual infor-
mation for rankings to make results as accurate as possible for the user. In fact, the
ability of users to annotate content and results by adding new triples is a novelty in
applying semantic technology to the social web.

5.1 Finding, evaluating, matching and integrating content

All data and relevant metadata are stored to an RDF graph with their literals and URIs
indexed in Lucene for fast full-text search as well as faceted search. In contrast to
Stanbol’s ContentHub, the found entities are interlinked RDF resources so that it be-
comes trivial, for example, to display details of a found category. Because of the in-
dexing at graph-level, existing RDF data can be added and benefit from the same
indexing capabilities and from a unified access interface as uploaded and RDF-
transformed content. This can be used to store relevant triples from existing sites on
the linked data web. Following the REST principle, a client must only know the URI
of the service, be able to parse an RDF format, and understand the ontology.

The auto-suggestion component creates a model of most likely queries by looking
at phrases in the stored content and, when queried with either partial words of whole
words, suggests a list of phrases which appear with the highest probability in the cor-
pus. This leads not only to human readable suggestions, but guarantees the presence
of documents when a phrase is selected. It gives the user a intuitive feeling of what
type of information is available in the system, making their foraging activities easier.

8

5.2 Optimizing results based on user feedback

The components dealing with unstructured content are sensitive to ambiguities, noise,
and other forms of mistakes in prediction. For example, a simple NER implementa-
tion is often based on a dictionary lookup. That is, a text is examined one word at a
time and if a word appears in a specific type-based dictionary, the word is tagged with
that type. The problem comes when words can appear in multiple dictionaries. The
word “cancer” appears in an “astrological sign” dictionary but also in a “medical dis-
ease” dictionary. If the system has erroneously tagged the word with the astrological
meaning, this mistake can be manually corrected. However, this kind of error is
common and we do not want a user to have to manually correct errors that are related.

KMX is a client server architecture made available in Fusepool with specific fea-
tures specifically for advanced users like professional patent searchers. It is imple-
mented via a web service as a RESTful API to be used from within the Apache Stan-
bol environment. The web service provides REST endpoints for the following tasks:
Managing datasets (Creating, Adding); Workspace (Creating from a dataset, Label-
ling for classifier model, Creating stop lists); Classification (Training/Applying SVM
models); and Clustering (e.g. Landscape). The process of optimizing results based on
user feedback is detailed below.

6 Graphical user interfaces and visual analytics

For a range of mobile and desktop devices, Fusepool provides an attractive and
functional web user interface through its applications (e.g. PartnerMatch, PatentEx-
plorer, FundingFinder, UserFeedback, PublicationExplorer, and ExpertMatch).

6.1 Visualization concept and dashboard framework

The Big Data vision is popularly defined using the Three V’s: Volume, Velocity
and Variety7. However, big variety of data makes it difficult to provide smart user
interfaces for the data. A general approach provides a user interface for about any
kind of data while a very specific user interface targets a specific kind of data. Both
approaches are not satisfactory: in the generalized UI valuable information is missing
or the user is overwhelmed, while a specific interface might not be used for other
kinds of data and is not scalable to other requirements.

To solve this problem, a hybrid approach is used: The Fusepool dashboard frame-
work provides the basis of the graphical user interfaces for user interactions. For ex-
ample, users can execute search functions in the dashboard and drilldown and refine
results. Gradually, the dashboard becomes more adaptive and dynamic, first by adapt-
ing the graphical user interfaces and information visualizations to multiple devices
(PC, tablet, smartphone) and second, the graphical user interfaces and information
visualizations become adaptive to the information, i.e. the semantics of the data itself.

7 As defined by Gartner at http://www.gartner.com/newsroom/id/1731916

9

Designing and prototyping the graphical user interfaces (GUI) involved an iterative
process from discussions with project members, end users, designers and program-
mers over physical mock-ups to quickly implemented functionalities using the Enyo
framework8.

One of the core tenets of Fusepool is to separate the data from the GUI and visuali-
zations. The dashboard is “intelligent” meaning that its layouts and designs are adap-
tive based on device characteristics and user profiling and customizations. The tradi-
tional approach is that application developers decide what data should be shown cre-
ating a GUI based on software architecture patterns such as the model-view-
controller. However, such a system would be tightly coupled and changing the data
usually requires redesigning the GUI accordingly.

6.2 Intelligent dashboard implementation

The GUI is built on Enyo with different modes for PC, tablet, and smartphone. The
final implementation contains two separate interfaces: a large screen version and a
mobile version. The data is fetched in JSON from a specialized server for search que-
ry processing and querying of the RDF data. The detailed data of the entries is than
fetched directly from a SPARQL endpoint to the client. The RDF data is parsed using
the rdfquery library to handle it via the GUI.

The GUI starts out clean and uncluttered with just a search interface. When the us-
er enters a query term, auto-suggestion provides a list of likely phrases that may com-
plete the query. After every typing in the input field, an Ajax request is sent to the
backend to get a list of likely phrases for the query term. Pressing ‘Enter’ or clicking
the search symbol, the GUI sends the request to the Fusepool platform.

Figure 1: Search with auto-suggestion for query terms

The search results are displayed in the middle pane of the GUI. On the left side, the
entities are displayed under their types (facets). The GUI groups the entities by types
and sorts them according to the number of entities for each type – the type with the
most entities is displayed at the top. To avoid cluttering the GUI, each entity is shown
only under one type. The identified entities in the retrieved list of files are displayed
on the left pane. If the user clicks on the checkbox left to the entity’s label, then the
GUI starts a new search where only files with that entity are retrieved. The list of
retrieved files updates instantly.

8 Enyo is a JavaScript app framework to build native-quality HTML5 apps that run everywhere

[http://enyojs.com]

10

Figure 2: Display of search results (middle), detail view (right), and entities as

In order to better match search results to a user, the user can create a text classifier
to be applied to those or similar queries in the future. To train a text classifier, the user
must first train the classifier selecting a sufficient number of files as positive (rele-
vant) and negative (not relevant). To start training, the checkbox next to ‘Classify’ is
checked, prompting the GUI to display interfaces for the training.

Figure 3: Training a text classifier by selecting positives and negatives

