
Super Stream Collider–Linked Stream Mashups for
Everyone?

Hoan Nguyen Mau Quoc, Martin Serrano, Danh Le-Phuoc, and Manfred Hauswirth

Digital Enterprise Research Institute, NUI Galway

Abstract. This paper describes the Super Stream Collider (SSC) platform and
tools, which provide a web-based interface and tools for building sophisticated
mashups combining seamnitcally annotated Linked Stream and Linked Data sources
into easy to use resources for applications. The system includes drag&drop con-
struction tools along with a visual SPARQL/CQELS editor and visualization tools
for novice users while supporting full access and control for expert users at the
same time. Tied in with this development platform is a cloud deployment archi-
tecture which enables the user to deploy the generated mashups into a cloud, thus
supporting both the design and deployment of stream-based web applications in
a very simple and intuitive way.

1 Introduction

The use of near-realtime stream data is a key enabler and driver in such diverse applica-
tion domains as smart cities, home automation, ambient assisted living, or recommender
systems. As on the Web, access to and integration of information from large numbers of
heterogeneous sources under diverse ownership and control is a resource-intensive and
cumbersome task without proper support. Semantic Web and Linked Data technologies
can answer to many of the requirements but need to be (1) extended to transparently
cater for dynamic stream information, (2) tailored to the existing infrastructures – from
Twitter streams down to resource-constrained sensing hardware, and (3) made easily
accessible and usable to promote uptake.

For (1) and (2), approaches have been proposed, e.g., C-SPARQL, EP-SPARQL,
CQELS, SPITFIRE, GSN, etc. Still, wide-spread access to real streams does not ex-
ist at the same level as for Web resources. A public resource to remedy this problem
is LSM, the Linked Stream Middleware (lsm.deri.ie), which provides access to more
than 100,000 stream sources via a RESTful interface and a SPARQL/CQELS endpoint.
However, to the best of our knowledge, no general-purpose infrastructure to support (3)
exists to lower access thresholds for users and developers.

In this paper we describe the Super Stream Collider (SSC) platform and tools, which
build on our pre-existing work for (1) and (2), i.e., CQELS, LSM, DERI Pipes, SPIT-
FIRE, and GSN, and provides a web-based interface and tools for building sophisticated
mashups combining semantically annotated Linked Stream and Linked Data sources
into easy to use resources for applications. The system includes drag&drop construc-
tion tools along with a visual CQELS editor and visualization tools for novice users
while supporting full access and control for expert users at the same time. Tied in with

? This work has been supported by SFI under Grant No. SFI/08/CE/I1380 (Lion-2) and by the
EU under Grant No. ICT-2011-7-287305 (OpenIoT).

2 H. Nguyen, M. Serrano, D. Le-Phuoc, M. Hauswirth

this development platform is a cloud deployment architecture which enables the user to
deploy the generated mashups into a cloud, thus supporting both the design and deploy-
ment of stream-based web applications in a very simple and intuitive way.

The structure of the paper is as follows: Section 2 starts with a high-profile end-
user application that we have built using SSC and which was used by approx. 4300
users during the Volvo Ocean Race finale in Galway June/July 2012 (“eat your own dog
food”). Section 3 then describes the conceptual architectural design of the SSC stream
mashup platform followed by a presentation of the main functionalities and features
available to the user via the GUI in Section 4. Section 5 then outlines the implementa-
tion with particular emphasis on the principles towards enabling stream processing in
cloud environments. In Section 6, we conclude with a summary of our findings. The
appendix of the paper discusses how SSC addresses the requirements of the semantic
web challenge.

2 Example SSC Application
The Volvo Ocean Race (VOR) finale in Galway, June/July 2012 attracted more than
820,000 visitors in a 9-day event (http://www.letsdoitgalway.com/). DERI developed
the official VOR mobile app for Android/iPhone which included a mobile sensing part
based using SSC as the stream processing platform. In the deployment we had 3000
iPhone and 1300 Android users during the finale. The goal was to test the platform and
test it in a real, large-scale deployment with hard requirements and constraints. Using
the application – besides “standard” information like timetables, results, location infos,
etc., all using Linked Data sets – people can explore and experience in a smart city
through real-time sensor data, i.e., traffic lights, traffic cams, weather stations, park-
ing spaces, etc. together with social streams (in real-time, e.g., tracking other people’s
locations, tracking of crowd behavior, etc.). The GUI provides all kinds of query pos-
sibilities and map visualizations (see Figure 1 below) for these stream data, so that it
becomes readily usable and useful for the end-user. The users also can decide if they
want to use other information as real-time monitoring service, e.g., parking spaces,
weather stations, traffic cams, etc. This mobile sensing application is a typical SSC
application combining user-defined semantically annotated Linked Stream sources and
their combinations with static Linked Data deployed in our execution engine and data
center backends.

3 Architectural Design
The SSC platform is designed as a classical dataflow/workflow execution environment
connecting processing input/outputs through pipelines for creating data mashups. Con-
ceptually, each operator has n input streams and one output stream as illustrated in
Figure 2. The inputs can be in any format while the output is RDF. Only the final oper-
ator of a workflow can return a format other than RDF, if necessary. Operators can be
of three classes: A data acquisition operator is used to collect or receive data from data
sources or gateways and can be pull-based or push-based. In these operators the data
transformation and alignment can be done to produce a normalized RDF output format.
A stream processing operator defines stream processing functionalities in a declarative
language, e.g., CQELS. A streaming operator streams the outputs of the final operator
of a workflow to the consuming applications. An example of a consuming application
is the real-time visualisation widget described in Section 5.

Super Stream Collider 3

Live Data
Monitoring

Live Data
Visualization

e[0] f[0] t[0] d[0] s[3.0.0] swc.tex 12/10/2012 at 16:03 page 3 #1

enables users for following groups of people in real-time by graphical representation of
location data collected from other users mobile phone as depicted in figure [Map with
Crowds].

3 Architecture Design

The SSC platform is designed as an execution environment that pipelines processing op-
erators in computing workflows for creating data mashups. Conceptually, each operator
has n input and one output as illustrated in Figure ??(a). The inputs can be in format
but the output is only in certain defined formats. Only the final operator of a workflow
can return some other formats other that RDF format. The rest only returns a unified
RDF-conformed format. The first type of operator is data acquisition operators which
are used to collect or receive data from data sources or gateways. They can be pull-
based or push-based. In such operators the data transformation and alignment might be
carried to output the data in a normalised format. The next type of operators are stream
processing operators that can represented a declarative language, e.g. CQELS language.
The final type is streaming operators which stream the outputs of the final operator of
a workflow to the consuming applications. An example of consuming application is the
realtime visualisation widgets described in our implementation in section 5.

N input streams

operators

output
stream

Fig. 1. Architecture of the SSC platform.

The operators of a same class are executed on an execution container. An example of
execution container is a continuous query precessing engine that is used for stream pro-
cessing operators. The execution containers are running on networked machines that
can be dynamically allocated based on the computing demands registered on SSC as
shown in Figure 3. For instance, if more data sources registered to fetched in to SSC,
it can request its cloud computing infrastructure to allocate an new data fetching ma-
chine. 1 . In a workflow, two connected operators can be executed in different execution 1 DLP:@Martin, could

check this cloud stuffcontainers. For instance, the data acquisition operator for collecting Tweets can stream
data via the network to the stream processing engine. The external computing services
such as SPARQL endpoints, web services are called external execution containers.

The SSC platform is equipped with a visual programming environment for build-
ing workflows of operators in a box and arrow fashion. The programming environment

• • • October 12, 2012 —0 • • • p3:#1 — �R �M

Supported By:

SSC

Mobile Users
Visualization

Super Collider
Weather Data

Service

Super Collider
Ubiquitous

Data Service

Fig. 1. Volvo Ocean Race Application

N input streams

operators

output
stream

Fig. 2. Architecture of the SSC platform.

The operators of the same class are executed on an execution container. An example
of execution container is a continuous query precessing engine that is used for stream
processing operators. The execution containers are running on networked machines that
can be dynamically allocated based on the processing load registered to SSC. Figure 3
shows an informal high-level view of this architecture.

Super Stream Collider

Data sources

Fig. 3. Layered architecture of the SSC platform.

For instance, if the number of registered sources grows, SSC will request additional
data fetching engines from its underlying cloud computing infrastructure and allocate

4 H. Nguyen, M. Serrano, D. Le-Phuoc, M. Hauswirth

them to this task. Thus SSC can flexibly answer to dynamic load-profiles which are
common in stream-based applications. .In a concrete workflow, two connected operators
can be executed in different execution containers. For instance, the data acquisition
operator for collecting Tweets can stream data via the network to the stream processing
engine. The external computing services such as SPARQL endpoints or web services
are called external execution containers.

To support the easy and intuitive definition of data processing workflows in a “box-
and-arrows” fashion, the SSC platform offers a visual programming environment. The
interactive process of creating a mashup with SSC features context-aware discovery ser-
vices for data sources. This process enables the user to incrementally build a workflow
in a step-by-step fashion by dragging&dropping the required building blocks and con-
necting and parametrizing them. Also, this supports visually debugging the workflow
of the mashup. When the user finishes a mashup, it can be deployed to the SSC cloud
to be re-used as a data source or an operator.

4 System Demonstrations
A deployment of SSC is online at http://superstreamcollider.org, which provides a user-
friendly interface called SSC visual editor. This is a light-weight Web-based workflow
editor for composing mashup data through drag&drop. Using the SSC visual editor, we
aim at providing a programmable Web environment suitable not only for expert users
but also for non-expert programmers. Figure 4 provides a overview screenshot of SSC
with the numbers feature explained in the text below.

editor area

data sources
and operators
area

debug area

RDF
data

Data visualization

1

2

3

a
b

c

Fig. 4. SSC User interface.

The main components of the platform are the visual editor (1), data sources and
operators (2) and the debugging component (3). Each data source and operator is vi-
sualized as a block in the editor area Visually, a mashup workflow is a combination of
connected operators and data sources. It is incrementally designed by dragging the icons
representing for corresponding operators in (2) and then dropping to the editor area (1).

Super Stream Collider 5

The flows of data from the sources to the final output are defined by wiring the blocks
with configured parameters. The live visualisations of operator outputs are shown in (3).
The output of the workflow is a live mashup data stream which can be published, visu-
alized and queried. Currently SSC supports several types of live data sources, such as
LSM sensors (over 100,000 sensor around the world including weather, train schedule,
traffic status, etc.), twitter streams, DBPedia and Sindice data sources, among others,
which can be discovered by the SSC discovery component. This context-aware dis-
covery service uses relevant text, location, sensor data sources that the user has typed
and chosen as inputs to form the queries to such systems to find useful data items to
recommend to the user. 3(a) in Figure 4 shows a temperature sensor as an example.

SSC’s debugging component supports the user by showing the results of each of
his/her actions. (b) in Figure 4 shows an example. The result data can be shown as
raw data, RDF data or can be visualized in different types of charts, so that users can
easily monitor their data processing workflows. In Figure 4, the output is a merge of
multiple input streams. Another typical example of stream data is Twitter data as shown
in Figure 5. In this example, the SSC collects all tweets mention about the user-specified
topic and provides them as an RDF stream. For this the user only needs to drag an
operator into the editor and enter the topic of interest.

Twitter stream

Fig. 5. Twitter data to RDF stream.

An important aspect of the SSC platform is that the data produced by a stream
mashup can again be published through a web socket URL and thus be re-used as
an input by other web applications or mashups. When a mashup is published, it will
be assigned to a unique websocket URL, e.g., ws://superstreamcollider.org/websocket/
8a8291b73215232 as shown in Figure 4.

Fig. 6. Publishing a live mashup with an URI

In addition, a mashup can be serialized as an “UserView” and be stored in a custom
JSON format in order to be later loaded into the editor or run by the server-side exe-
cution engine. For more advanced users, SSC also provides a CQELS/SPARQL query

6 H. Nguyen, M. Serrano, D. Le-Phuoc, M. Hauswirth

editor. The user can either enter the query directly into the query text area or use SSC’s
visual CQELS editor (Figure 4) which supports end-users in creating, modifying and
reusing CQELS/SPARQL queries in a drag&drop fashion.

1
3

2

Fig. 7. CQELS visual editor.

5 Operators and interesting features
This section overviews interesting SSC functionalities. Due to space constraints we can-
not go into great detail, but extensive documentation is available at http://superstreamcollider.
org/. SSC provides a wide range of data acquisition operators which enableaccess to
huge amount of data sources. The sensor wrappers of LSM allow SSC users to collect
data directly from physical sensors or via gateways. The RDF-izing operators extended
from Any231 help to convert dynamic web data sources to RDF-based streams. We
also implemented wrappers for transforming social stream data to RDF streams, as al-
ready mentioned for Twitter. For output streams of SSC mashups we support streaming
protocols such as PubSubHubbub2, XMPP3 and WebSockets.4

SSC also provides developers with various data manipulation operators. For RDF-
based data mashups and data consolidation, we extended and support the operators of
DERI Pipes [2]. To filter data streams, we use our CQELS engine [1] for constructing
window-based filters with the full expressive power of SPARQL 1.1 (CQELS is an
extension of SPARQL 1.1).

To reduce the effort of learning SPARQL and CQELS, SSC also offers visual SPARQL
and CQELS editor which enable the user to build SPARQL/CQELS queries interac-
tively and a step-by-step way. Furthermore, this interactive workflow editing process is
leveraged by the context-based discovery services which recommend potentially useful
data sources and data items in every step of building a mashup in SSC. These services
are powered by Sindice APIs, LSM’s sensor database, and other online SPARQL end-
points such as Dbpedia, LinkedGeoData, etc. The user can add more knowledge by
pointing SSC to further SPARQL endpoints.

1 http://incubator.apache.org/projects/any23.html
2 http://code.google.com/p/pubsubhubbub/
3 http://xmpp.org/
4 http://dev.w3.org/html5/websockets/

Super Stream Collider 7

The mashups deployed in SSC will be run in our elastic cloud computing infrastruc-
ture. This infrastructure dynamically allocates execution containers to execute the con-
stituent operators of the deployed mashups. For operators that query RDF streams and
RDF datasets, a container with a CQELS engine is created on demand to host such op-
erators. To enable low-latency continuous queries over big RDF datasets, each CQELS
engine has its own cache manager to cache and index relevant subsets of such datasets.
The (heavy) pull-based data acquisition operations are scheduled by our LSM’s Hadoop
cluster.

To support HTML and Android developers, we also built light-weight widgets for
consuming data from our live mashup. As demonstrated on the SSC website, they can
embed these widgets to their HTML pages or Android applications with few lines of
code and without having to learn RDF or SPARQL/CQELS, etc. With only a few pa-
rameter customisations, web pages or applications can receive live updates from SCC
via Websocket or Google Cloud Messaging for Android. 5

6 Conclusions
In this paper we have introduced our Super Stream Collider platform (SSC) which en-
ables the user to build complex mashups using semantically annotated Linked Streams
and Linked Data. SSC offers a huge number of stream sources, including social streams
such as Twitter, which can easily be extended by the user and provides sophisticated
visual tools both for novice and for expert users that speed up the learning curve. SSC
comes with a sophisticated cloud-based deployment environment which supports the
execution of mashups and the use of mashup output streams by other web applications
and mashups. We have extensively evaluated SSC in a large-scale real-world deploy-
ment with approx. 4300 users as part of the Volvo Ocean Race finals in Galway.

References

1. D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive approach
for unified processing of linked streams and linked data. In Proceedings of 10th International
Semantic Web Conference, pages 370–388, 2011.

2. D. Le-Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, and C. Morbidoni. Rapid proto-
typing of semantic mash-ups through semantic web pipes. In Proceedings of the 18th inter-
national conference on World wide web, WWW ’09, pages 581–590, New York, NY, USA,
2009. ACM.

Appendix: Meeting the Semantic Web Challenge Requirements
Minimal requirements
√

The application has to be an end-user application. The SSC platform has a user-
friendly web interface for different user levels as describe in Section 4. A comprehen-
sive description is given in the SSC user manual at http://www.superstreamcollider.org.√

The information sources used should be under diverse ownership or control.
By design, SSC allows the user to collect data from different providers under diverse
ownership and control policies. SSC also allows the user to annotate and integrate exist-
ing data sources to create new ones, which can have specific access/publishing policies
defined by the user.

5 http://developer.android.com/guide/google/gcm/index.html

8 H. Nguyen, M. Serrano, D. Le-Phuoc, M. Hauswirth

√
The information sources used should be heterogeneous. As described in Section 3,

SSC supports a broad variety of heterogeneous data sources with various data formats
and access protocols.√

The information sources used should contain substantial quantities of real world
data. SSC’s ultimate goal is to provide any real-world data captured by sensors or
available as streams as linkable Web information sources. With the SPARQL/CQELS
editors and processing engine, SSC enables developer to access to the full Linked Data
Cloud with the support of the discovery service of Sindice. SSC has access to a large
database of sensors provided by LSM with over 100,000 live sensor data sources all over
the world with approximately 20 million updates per day. It also provides a wrapper to
access to approximately 10000 sensors data sources from COSM.√

The meaning of the data has to play a central role. Facilitate by data transforma-
tion and annotations of SSC, the sensor and web data sources are semantically anno-
tated.
Additional Desirable Features
√

The application provides an attractive and functional Web interface (for human
users). SSC provides an easy-to-use GUI which has several visualisations of stream
data such as maps, charts, animated data updates, etc. The interactive faceted search
functionality makes the data exploration more intuitive and efficient and server-push
technology brings the experience of real-time web rendering to the users.√

The application should be scalable. The scalability of the system depends on under-
lying triple storage technologies, e.g. Virtuoso and the Linked Stream Data processing
engine (CQELS) [1]. Currently, the static dataset for approximately 100,000 sensor data
sources contains approximately 20 million triples. We are constantly adding more data
sources and enriching more metadata on the assumption that Virtuoso can handle bil-
lions of triples. For processing continuous queries, CQELS engine can handle up to
50,000 updates per seconds with thousands of query instances.√

Novelty, in applying semantic technology to a domain or task that have not been
considered before. Applying semantic technology to sensor data is a new trend in data
integration, and this work has been pioneering towards this trend. It is one of the first
systems that allows the integration of live sensor data with data in the Linked Data
Cloud.√

The application has clear commercial potential and/or large existing user base.
This platform provides an easy and unified way to integrate useful data captured from
sensors. Its Linked Stream Data can be used to rapidly build interesting applications in
different domains like “smart cities”, e-health and tourism. We apply the infrastructure
in research projects and with industry partners of DERI.√

Multimedia documents are used in some way. Some sensor data sources supported
in SSC/LSM produce image, audio or videos video data, e.g., traffic cameras, satel-
lite/radar images and noise sensors.√

There is an use of dynamic data, perhaps in combination with static information.
Dynamic Linked Stream Data combined with static data from Linked Data Cloud is the
main feature and motivation of the system.√

There is support for accessibility on a range of devices. SSC publishes data in
several formats to simplify the data consumption on different platforms. For example,
we support the Android and iPhone platforms in applications such as the described
Volvo Ocean Race apps.

