
Semantic Navigation on the Web with swget

Valeria Fionda1, Claudio Gutierrez2, Giuseppe Pirró1

1 KRDB, Free University of Bozen-Bolzano, Bolzano, Italy
2 DCC, Universidad de Chile, Santiago, Chile

Abstract. Semantic navigation in the Web of Data is crucial to exploit the power
of thousand of RDF data sources today available. We present swget, a tool that
enables to perform selective navigation of distributed semantic data sources, trig-
gering of actions over data encountered during the navigation, retrieval of data
and extraction of relevant Web fragments. At the core of swget there is a pow-
erful navigational language called NautiLOD with a concise syntax and a formal
semantics. swget can be exploited to write declarative specifications of informa-
tion on the Web in the form of scripts that can be shared, mixed, and reused. We
describe the architecture of the swget tool and present both a standalone version
and an online portal where users can create their intelligent agents, launch them
and be notified when results are ready. Besides, swget also provide an appealing
visualization tool to explore and make sense of results.
Key words: Semantic Navigation, Scripts, Linked Open Data

1 Introduction

We are assisting to a renewed interest in the graph nature of Web data. On one hand,
initiatives such as the Google Knowledge Graph and Facebook Open Graph, although
underlying the importance of semantic relations between data items, adopt closed archi-
tectures with idiosyncratic data models and very basic query languages. For instance,
it is not possible to perform complex information requests involving navigation of (dis-
tributed) data sources. On the other hand, huge amounts of open data are shared on the
Web by using standards such as the Resource Description Framework (RDF) for publish-
ing and interlinking data and query languages such as SPARQL to query these data. This
revolution is turning the classical Web, focused on hypertext documents and syntactic
links among them, into a Web of Data. In this new setting, Uniform Resource Identifiers
(URIs) are used not only to identify Web documents and digital content, but also new
kinds of resources such as real world objects (e.g., people, places, football teams) and
abstract concepts (e.g., sport, philosophy, geography). Descriptions (or representations)
for these resources can be obtained, in the same spirit of traditional documents, by deref-
erencing their associated URIs via the HTTP protocol. Semantic links and descriptions
are expressed by using a common data format, that is, RDF. Fig. 1 shows the parallel
between the traditional Web and the Web of Data. In particular, it reports an excerpt of
Wikipedia and its counterpart in the Web of Data, DBPedia. While the former is based on
documents and their hyper-links, the latter is founded on resources and semantic descrip-
tions. In the right part of Fig. 1, each dashed-circle represents a data source, identified by
a URI, containing the RDF description of the resource. For instance, in the data source
associated to the singer Robert Johnson, there is an RDF triple stating that he died in the
city of Greenwood. Note the semantic link between the corresponding resources expressed
via the property dbp-onto:deathPlace defined in the DBPedia ontology.

http://en.wikipedia.org/
Greenwood_Mississipi

Greenwood is
located at the
eastern edge of
the Mississippi
Delta...

http://en.wikipedia.org/wiki/
Eric_Clapton

Eric Patrick Clapton (born 30 March

1945) is an English guitarist and

singer-songwriter. Clapton is the only

three-time inductee to the Rock and

Roll Hall of Fame: once as a solo artist,

and separately as a member of The

Yardbirds and Cream.

http://en.wikipedia.org/wiki/
Jimi_Hendrix

James Marshall "Jimi" Hendrix

(born Johnny Allen Hendrix;

November 27, 1942– September 18,

1970) was an American musician and

singer-songwriter. He is widely

considered to be the greatest electric

guitarist in music history...

http://en.wikipedia.org/
wiki/27_Club

The 27 Club is a term used to

refer to popular musicians who

have died at the age of 27,

often as a result of drug and

alcohol abuse.

 Jimi Hendrix , Brian

Jones, Robert Johnson, Janis

Joplin, Jim Morrison, Kurt

Cobain all died at the age of 27

http://dbpedia.org
/resource/Eric_Clapton

http://dbpedia.org
/resource/Jimi_Hendrix

http://dbpedia.org
/resource/27_Club

http://dbpedia.org
/resource/Robert_Johnson

http://dbpedia.org
/resource/Greenwood

<dbp:Robert_Johnson,dbp-onto:deathPlace,dbp:Greenwood>
<dbp:Robert_Johnson,dbp-ontogenre,dbp:Delta_blues>

<dbp:Robert_Johnson,rdf:type,foaf:Person>
<dbp:Robert_Johnson,dbp-onto:writerOf,dbp:California_blues>

...

RDF triples (Description)

dbp-onto:
deathPlace

http://en.wikipedia.org/
wiki/Robert_Johnson

Robert Johnson died on August

16, 1938, at the age of 27, near

Greenwood, Mississippi.
 ...Eric Clapton has called
Johnson "the most important
blues singer that ever
lived."…
Johnson's shadowy, poorly
documented life and
death at age27

dbp-onto:
influenced

dbp-onto:
belongsTo

dbp-onto:
member

Fig. 1. Web of Documents versus Web of Data.

1.1 Why Semantic Navigation on the Web?
Initiatives such as the Google Knowledge Graph underline the importance of semantic
relations between data items. For instance, by submitting the keyword Eric Clapton, one
gets some structured information such as his birth date, his albums and so forth. However,
the query mechanism is still keyword based and lacks any support for graph navigation;
it is not possible to specify patterns to select relevant information. The Knowledge Graph
only provides a set of related nodes (e.g., the album Crossroads) from where to manually
continue the navigation. We claim that in order to harness the full potential of graph-like
data available in the Web, it is crucial to have navigational languages that enable to
perform automatic navigation via a declaratively specification of the parts of the Web of
interest. Navigational languages enable finding pairs of nodes connected by a sequence
of edge labels matching some pattern (or navigational expression) expressed via regular
expressions over the alphabet of edge labels. In a Web context, since the structure of the
graph is unknown, a seed node where the navigation starts is provided3. The Web of Data
and its inherent features, i.e., standard RDF data sources and usage of well-established
technologies (e.g., the HTTP protocol), is an attractive environment where to apply
navigation at large scale. RDF properties connecting data items and SPARQL to query
RDF data sources enable to rise navigation to the level of semantic navigation. Consider
the scenario depicted in Fig. 1. Starting from Robert Johnson in dbpedia.org, navigation
enables to discover musicians that he influenced such as Eric Clapton or members of the
27 Club. This kind of navigation on a single data source (i.e., DBPedia) can be performed
by using SPARQL 1.1. despite its limitations as the lack of branching in property paths.
The goal of the swget system is to “give the power” to Web users. swget enables to
write script that declaratively specify and enable to semantically navigate autonomous
datasources in the Web. A typical scenario where swget operates is depicted in Fig.3.

3 The seed node in the Google Knowledge Graph was the keyword Eric Clapton (more precisely,
its internal identifier in the Knowledge Graph).

2 The swget system

The main objective of the swget tool is to enables users to write scripts containing
navigational expressions to be evaluated over the whole Web. swget implements the
formal navigational language NautiLOD described in our previous work4 and is available
in three flavours: i) a command line tool; ii) a standalone GUI; iii) a Web application where
users can create scripts, submit them and be notified when results are ready. swget
has been implemented in Java by exploiting technologies such as the HTTP protocol
to retrieve data directly from the source, JavaCC to deal with the features of regular
languages, Prefuse to visualize RDF graphs, Adobe Flex to build the Web application.
The tool standalone is downloadable at http://swget.wordpress.com while the Web
application is accessible at http://swget.inf.unibz.it.

Network Manager

RDF

Interpreter

Automaton

Automaton builder

Jena Model

Execution Manager

script

List of URIs

URI

Link Extractor RDF Manager

URI

URI

URI

URI

URI

URI
URI

URI

URI
URI URI

URI

RDF

H
TT

P
G

ET
 U
R
I

The
Web of Data

user

RDF data

swget
architecture

Actions

Send email
Retrieve data
….

Results

script

script

Fig. 2. The swget architecture.

2.1 High level architecture

The high level architecture of swget is reported in Fig. 2. The user submits to the system
a swget script defined according to the specification described in Section 2.2.The Inter-
preter receives the input, checks the syntax and passes it to the Automaton Builder. From
the script, the Automaton builder, generates the automaton associated to the navigational
expression, which will be used to drive the execution of the script on the Web. The ex-
ecution Manager, controls the flow of the execution and passes to the Network Manager
the URIs to be dereferenced. This module performs the dereferencing of URIs via HTTP
4 Fionda V., Gutierrez C., Pirró G.: Semantic Navigation on the Web of Data: Specification of
Routes, Web Fragments and Actions. In Proc. of WWW, pp. 281-290, (2012).

GET calls and obtains set of RDF triples, which are converted into Jena models by the
RDF Manager. The Link Extractor module takes in input the automaton and the model
and selects a subset of outgoing links (to be expanded at the next step of the navigation)
according to the current state of the automaton. The set is given to the Execution Man-
ager, which starts over the cycle. The execution will end either when some navigational
parameter imposes it (e.g., a threshold on the network traffic has been reached) or when
there are no more URIs to be dereferenced.

2.2 swget syntax
In this section we describe the abstract syntax through which scripts can be defined.
swget scripts are written in RDF and contain a set of triples along with navigational
expressions in the NautiLOD language, the syntax of which is reported below.

path ::= pred | pred−1 | action | path/path
| (path)? | (path)∗ | (path|path) | path[test]

pred ::= <RDF predicate> | <_>
test ::= ASK-SPARQL query

action ::= procedure[Select-SPARQL query]

NautiLOD provides a mechanism to declaratively: (i) define navigational expressions;
(ii) allow semantic control over the navigation via test queries; (iii) retrieve data by
performing actions as side-effects along the navigational path. The navigational core of
the language is based on regular path expressions, pretty much like Web query languages
and XPath. The semantic control is done via existential tests using ASK-SPARQL queries.
This mechanism allows to redirect the navigation based on the information present at each
node of the navigation path. Finally, the language allows to command actions during
the navigation according to decisions based on the original specification and the local
information found. Now we are ready to introduce swget scripts for which an ontology,
supporting their semantic specification has been defined.
Definition 1 (swget script). A swget script S is a tuple of the form 〈n,G, s, e〉, where
n is the URI, which defines the name of the script, G is an RDF graph, s is the seed URI
where the navigation starts and e is a NautiLOD expression.

To explain how swget scripts look like, consider the following request to be evaluated
over the excerpt of Web depicted in Fig.3.

Blues

fb:<http://rdf.freebase.com/ns/>

owl:<http://www.w3.org/2002/07/owl/>
rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
foaf:<http://xmlns.com/foaf/spec/>

dbpo:
associatedActs

Eric
Clapton

foaf:depiction

Ripley
Surrey

dbpo:birthPlace

foaf:isP
rimaryTo

picOf

http://en.wikipedia.org/wiki/
Eric_Clapton

Singer dbpo:occupation

B.B.
King

foaf:depiction

http://en.wikipedia.org/
wiki/B.B._King

1925-09-16

dbpo:birthDate

Blues

dbpo:genre

Pappo foaf:
depiction

foa
f:p

rim
ary

Top
ic

http://en.wikipedia.org/
wiki/Pappo

2005-02-24

dbpo:deathDate
./

57413

Clapton,
Eric

nyt:
topicPa

ge

rdfs:
label

owl:sameAs

dbpedia.org nyt.com

freebase.org

Country
fb:subgenres

owl:sameAs

B.B.
King

Itta Bena

fb:
placeOfBirth

owl:sameAs

dbp:<http://dbpedia.org/>
dbpo:<http://dbpedia.org/ontology/> nyt:<http://http://data.nytimes.com/>

foaf
:isP

rima
ryTo

picO
f

dbpo:
associatedActs

http://topics.nytimes.com/top/
reference/timestopics/people/c/
eric_clapton/index.html

Fig. 3. An excerpt of the Web of Data with information from different datasources.

Example. Joe is a fan of Eric Clapton and wants to discover artists (and their aliases)
(in)directly associated with Clapton up to distance 3. In particular, he is interested in
chains of artists that are still alive and wants to receive via email their Wiki pages.

In order to fulfil this request via swget Joe writes the script reported in Fig. 4. Let’s
explain how it has been built. The first thing to do is to create a new script and give it a
name (i.e., clapton.rdf). Then a graphG can be defined with triples stating, for instance,
the topic of the script (i.e., Music), a comment in natural language to facilitate its reuse
and so forth. Besides, in G some parameters to bound the portion of the network visited
can be also defined. Here, it is stated (property :trusted_domains) that only information
from dbpedia.org and freebase.org should be trusted and further processed. Also a
timeout has been set (property :timeout). Further options are described in the Web site.

clapton.rdf

Seed URI (s)

Name(n) Graph (G)
:clapton_script

:clapton_script foaf:primaryTopic dbpedia:Music.

:clapton_script rdfs:comment "This script retrieves live artists (and
their Wiki pages via email) that are directly or indirectly associated
with Eric Clapton up to distance 3."^^xsd:String.

:clapton_script :trusted_domains "dbpedia,freebase"^^xsd:String.

:clapton_script :timeout "20"^^xsd:Int.

:clapton_script :seed_uri dbpedia:Eric_Clapton.

:clapton_script :nav_expr "(<dbponto:associatedMusicalArtist>[ASK{FILTER NOT
EXISTS{?x <dbponto:deathDate> ?d}}]/ACT[select ?p where {?x <foaf:primaryTopicOf>
 ?p}::sendEmail(joe@joe.org)])<1-3>/(<owl:sameAs>)*."^^xsd:String

(e)NautiLOD expression

{

}

@prefix : <http://inf.unibz.it/ontologies/2012/10/swget#>
@prefix foaf: <http://xmls.com/foaf/spec/>
@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix dbpedia: <http://dbpedia.org/resource>
@prefix dbponto: <http://dbpedia.org/property>
@prefix xsd: <http://w3.org/2001/XMLSchema>

Fig. 4. A swget script.

The next step is to specify (property :seed_uri) the seed URI where the navigation
starts. In this example the navigation starts from the URI associated to Eric Clapton
in DBpedia. The last step is to define (property :nav_expr) the navigational expression
in NautiLOD. The property associatedMusicalArtist is exploited to discover chain
of associated artists (see Fig. 3). However, as Joe is interested only in chains including
artists that are still alive, the ASK query is used to select only those artists (it keeps
artists for which the property dbpo:deathDate does not exist). From those artists (B.B.
King in this case), the system triggers an action (described by the ACT [] block) that
selects on the current datasource (i.e., triples about B.B. King in Fig. 3) the Wikipage
and send it via email. Actions can be considered as a side-effect that do not interfer with
the navigation, which continues toward the datasource in freebase.org associated to
B.B. King reached via owl:sameAs. Since form here, it is not possible to further expand
owl:sameAs link the navigation ends. Note that from B.B. it is also possible to reach the
datasource associated to Pappo in DBPedia. However, since Pappo did not pass the test
define in the ASK query (he is not alive) this navigation branch ends.

3 Use case scenarios

Scenario 1 (standalone GUI): Joe is fond of cinema and is a fan of Stanley Kubrick. He
maintains a Web page with information about Kubrick collected from different Web sites
such as Wikipedia where he found information about Kubrick’s life and basic information
about his movies, and IMDB where he found more detailed information about Kubrick’s
movies. Joe wonders whether other directors, which have been influenced by Kubrick
have directed interesting movies worth to be mentioned in his Web page. The idea seems
appealing but: what if Joe tomorrow is interested in some other directors? He realizes
that the burden of manually retrieving information (from different sources) is too much;
besides, on a regular basis he has to “manually” look for relevant information to be
added in his Web page. Joe has a thought: it would be nice to have an intelligent tool
that automatically “navigates” the Web on my behalf and find relevant information. He
realizes that DBPedia, LinkedMDB and Freebase maintain information very akin to that
he manually collects. The last tile of the puzzle remains: finding the tool! Joe has been
told about swget, which may help him. He visits the website and has a quick look at
the syntax of NautiLOD. He downloads the tools and after launching it he gets the GUI
shown in Fig. 5 (in the figure for sake of space the main view and the graph view are
represented together). Joe writes an swget script to fulfil his information needs. The seed
URI is that of Kubrick in DBPedia while the NautiLOD expression is reported in the
top-left part of Fig. 5. Joe decided to consider movies directed by some director directly
influenced by Kubrick with the constraint that these directors have to be more than 50
years old. Joe launches the scripts and goes to the pub with his friends: the tool in the
meantime will do the job. When he comes back, everything is done. Joe discovers a lot
of interesting things coming from different datasources (via the owl:sameAs property):
directors such as Woody Allen that have been influenced by Kubrick as well as movies such
as Zelig. Apart from being graphically visible in the GUI, these pieces of information are
available on the form of RDF triples, which can be easily included in his Web page. Once
in a while, Joe relaunches the script and gets fresh information directly from the data
sources. Besides, he passes the script to his friend Syd that with a slight modification (he
changes the seed URI) “centers” the information finding around Alejandro Jodorowsky.

John Ford

Steven Spielberg

Halfred Hitchcock

 seed URI: http://dbpedia.org/resource/Stanley_Kubrick

NautiLOD expression:
<dbpo:influenced>[Q1]/<dbpo:director>/<owl:sameAs>*

Q1=ASK {?person <dbpo:birthDate> ?y.

 FILTER(?y < "1962-01-01").}

Movies directed by at least one
director, more that 50 years old,
influenced by Stanley Kubrick.

David Lynch

Martin Scorsese

New York
Stories

Zelig
Woody Allen

Taxi Driver

Zoom +

Stanley_Kubrick

(co-directed)

NautiLOD
Expression
composer

Network
parameters

Visualization
type

Graph
Visualization
parameters

Fig. 5. The swget GUI.

Scenario 2 (Web interface): Valerie is a scientific journalist and is writing an article
about the Semantic Web and in particular about the figure of Tim Berners Lee (TBL)
and his cooperation with other researchers. She thinks that it would be nice to investigate
the influence of TBL over other scientists and also from whom he has been influenced.
Moreover, having a reconstruction of this network and not only a set of “disconnected”
nodes would be even more useful. Since Valerie is particularly interested in the scientific
community, she thinks that it would be nice to restrict the network to scientists only.
Then, Valerie thinks about where to find this information; there are different data sources
that may help such as DBPedia and Freebase. Now the problem is how to gather in a
clever and automatic way relevant information from different data sources and present
it in an attractive way. Fortunately, Valerie is aware of swget and by visiting the Web
site she discovers that it is available both as a standalone application and a Web based
interface available at swget.inf.unibz.it. That’s what she was looking for! When she
runs her swget script she is given an agent id and gets notified via email as soon as
the application has finished. Results according to different visualizations are shown in the
right part of Fig. 6. The left parts shows the main interface.

Dependency graph
Expression

Visualization control

Automaton

Statistics

Sunburst

I-cicle

Main
interface

Bubbles-out

Fig. 6. The swget online portal.

Learnt lesson. The aim of swget is to give the power to Web users to directly access
information. i) However, dereferencing many URIs can be time consuming. We tried to
address this issue by the swget online portal (swget.inf.unibz.it), where users can
compose swget script and be notified about the results via email. The next step will be
to implement these ideas in an agent based infrastructure where the NautiLOD language
will be used to instruct mobile agents to navigate the datasources and perform actions. ii)
Datasources are noisy. This is especially true for those automatically converted in RDF.
iii) It is very difficult to reach small datasources if these are not connected to some “hubs”.

Table 1. Appendix: Compliance with Minimal (M) and Additional (A) Requirements

M1) The application has to be an end-user application
swget is available both as a standalone tool and a Web portal ready to use.
M2.1) Information sources under diverse ownership or control
swget scripts span different and autonomous RDF data sources available on the Web of Data.
M2.2) Information sources heterogeneity
The tool is not bound to any particular type of source. Regarding syntax of the sources, it works
with RDF and HTML.
M2.3) Information sources and substantial quantities of real world data
All data handled by swget are taken directly from the data source. The information horizon of
swget is the Web.
M3.1) Meaning must be represented using Semantic Web technologies.
swget is about semantic navigation. It leverages RDF predicates to enables the navigation.
Besides, the usage of ASK SPARQL query provide a means to orient the navigation by filtering
out certain datasources. The output of scripts are RDF documents that can be further exploited.
M3.2) Data manipulation/processing in interesting ways
swget takes a semantic specification in the NautiLOD language and scrutinizes distributed
RDF datasources to discover portions of the Web conform to the specification.
M3.3) This semantic information processing has to play a central role
swget is all about semantics: it uses both RDF and SPARQL to drive and control the navigation.
A1) Web interface
We provide a Web interface implemented in Adobe Flash at http://swget.inf.unibz.it.
A2) Scalability
The “horizon” in which swget operates is the whole Web. swget provides a mechanism based
on ASK SPARQL queries to control the navigation. For scripts that may take long time, the
Web interface enables to submit jobs and be notified then the task is completed.
A3) Rigorous evaluations
We performed an evaluation of the NautiLOD language in our WWW2012 paper.
A4) Novelty
swget is a tool to write declarative navigational expression that exploit the semantics of RDF
datasources at a Web scale. Besides, it incorporates a mechanism to command actions over data.
A5) Beyond pure information retrieval
swget handles information at a semantic level available in RDF triples.
A6) Commercial Potential and/or large existing user base.
Applications of swget can include: intelligent semantic crawling to build personalized search
engine, incorporation of swget scripts in HTML page to enhance their content and so forth.
A7) Contextual information is used for ratings or rankings.
swget accesses data “as it is”. It returns exact information from structured sources, thus the
notion of ranking and approximation do not apply here.
A8) Multimedia Data
swget can focus on multimedia documents (e.g., images) by exploiting specific predicates (e.g.,
foaf:image) in scripts.
A9) Dynamic Data
swget scripts are executed on the live Web, therefore always guarantee fresh data.
A10) Result accuracy
The user can specify how deep (and wide) would like to search the Web. Over static and reliable
data sources swget gives exact results. Over dynamic (and unreliable) data sources on the Web
has all features/problems of getting fresh data.
A11) Multiple languages
As data providers (e.g., DBPedia) start to provide multilingual information, it naturally adapts;
expressions can be used to filter out information in a particular language.

