
Entity List Completion using the Semantic Web

David Urbansky, James A. Thom, Daniel Schuster, Alexander Schill

Dresden University of Technology
RMIT University

{david.urbansky,daniel.schuster,alexander.schill}@tu-dresden.de
james.thom@rmit.edu.au

Abstract. Entity List Completion is the task of finding and ranking
related entities for a given set of seed entities. While most researchers
have used semi-structured Web pages to approach this task, we describe
a novel technique for finding related entities using the Semantic Web
as a source. Our evaluation and analysis shows that using linked data
from the Semantic Web for related entity finding outperforms current
state-of-the-art systems.

1 Introduction

Entity List Completion (ELC), also known as Entity Set Expansion or Related
Entity Finding, is the task of finding and ranking related entities for a given
set of seed entities and sometimes a given narrative of the desired relation. For
example, with the seeds Homer Simpson, Ned Flanders, and Barney Gumble

we would expect an ELC system to extract more characters from the TV show
“The Simpsons” such as Bart Simpson or Lisa Simpson. A given explicit de-
scription of the expected relation could, however, state that more “male cartoon
character” would make the list complete. Our contribution in this paper is the
development of an ELC algorithm that uses the Semantic Web as a source and
we show that it outperforms current state-of-the-art approaches.

2 Related Work

Dalvi et al. [3] use the SEAL/Boo!Wa!1 system [7] to extract entity candidates
from semi-structured Web pages that have similar character patterns as the
seed entities. They then rank the candidates for which they found a URI in
their billion triple index. The ranking is done by comparing the type of entity
candidate with the target type given in the query with the seeds. If the type
matches the given type from DBPedia a score of two is given, if the broader
given type matches a score of one is given, and if nothing matches a score of zero
is given.

1 A live demo of ELC with SEAL can be found at http://boowa.com/

http://boowa.com/

Google Sets[1] is another example of a Web-based set expansion technique2.
Similarly to Boo!Wa! [3], it uses HTML patterns around the seeds to find similar
entities.

As of this writing, there are very few related works pursuing the ELC task
on the Semantic Web. One such system is “RelFinder” [6, 5], which takes a
few seeds from DBpedia and visually shows relations among them. They use a
distance measure based on the connection path length between the entities - a
variant of Dijkstra’s shortest path algorithm [4]. The fewer hops one has to take
to arrive at another node, the more likely it is to be related.

More related to our work, Balog et al. [2] use a Semantic Web crawl to
answer queries from the entity finding task. For each seed entity, given relation,
and target entity type, they search for entities that match that relation. Their
first approach is a simple SPARQL query that returns all entities which are
either subject or object in at least one triple with the source entity and are of
the target type. Their second approach relies on an exhaustive search following
all links from the source entity to the target type. All instances that are on
the path are considered to be entities fulfilling the given relation. While there is
extensive research on the ELC task using semi-structured HTML pages from the
Visible Web, researchers have just begun employing the Semantic Web for the
ELC task. Their results, however, have not yet been compared existing work.
We will try to close this gap by crafting an entity extraction technique which
works on interlinked data of the Web of Data comparing it to state-of-the-art
approaches that do not use the Linked Open Data (LOD) cloud.

3 SWELC: Semantic Web Entity List Completion

Information on the Semantic Web is structured and often contains semantics
which should make it easy for machines to read and process the data. However,
the information is highly distributed over thousands of Web pages. The Semantic
Web contains a few major sources such as DBpedia and Freebase, but every Web
page containing RDFa, for example, provides more triples for the Web of Data.
In the conception of the algorithm, we assume that there is an index3 or triple
store that aggregated triples from many different sources. We then use this index
as the single query point, removing the need to work with distributed data.

3.1 Detecting Ontology Concepts using Seed Entities

Fig. 1 shows the first step of SWELC in greater detail.
We will demonstrate the process with an example: concept = Actor, SeedSet =

{“Jim Carrey”, “Josh Brolin”}. First, we search the index for URIs with in-
formation about these seeds. From the result list we now need to find the URI

2 Google Sets has gone offline in the time of writing this paper, it was available at
http://labs.google.com/sets

3 In our later experiments we use http://sindice.com and an index over the Billion
Triple Challenge 2011 corpus

http://labs.google.com/sets
http://sindice.com

Fig. 1. The concept URI detection process of the Semantic Web Entity Extractor

which most likely is about the seed entity (Fig. 1b-d). We do this by detecting
the label of the subject that is described by the URI (see Section 3.2). Only
if the label matches our seed entity name exactly, do we take the URI as the
subject and query the index for all triples that belong to that subject (Fig. 1c).

In our example we might have found that the URI that matches our seed “Jim
Carrey” is http://rdf.freebase.com/ns/en.jim_carrey. We then retrieved
the following predicates (p) and objects (o) for this URI (subject):

p: <http://rdf.freebase.com/ns/film.actor.film>

o: <http://rdf.freebase.com/ns/m.0jykww>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/film.actor>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/award.award_nominee>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/people.person>

In the next step, we must determine the type of our seed. To ascertain which
type an entity belongs to, different vocabularies can be used. We want the algo-
rithm to extract from arbitrary ontologies and use only the following ontology-
independent predicates in the TypePredicateSet:

p: http://www.w3.org/1999/02/22-rdf-syntax-ns#type

p: http://www.w3.org/2004/02/skos/core#subject

p: http://purl.org/dc/terms/subject

After filtering the first triple set to only contain triples with a predicate which
is element of TypePredicateSet, we are left with the following URIs (o) as type
candidates:

o: <http://rdf.freebase.com/ns/film.actor>

o: <http://rdf.freebase.com/ns/award.award_nominee>

o: <http://rdf.freebase.com/ns/people.person>

We can now process our next seed = JoshBrolin. We use the same procedure
as with the first seed with one difference: when finding the seedURI for the seed
we limit the results to URIs which belong to the same ontology that the first
URI is from. This step is necessary for finding the common entity type among
all seeds of the SeedSet. For example, if the first seedURI is from DBpedia
http://dbpedia.org/resource/Jim_Carrey and the second one from Freebase
http://rdf.freebase.com/ns/en.josh_brolin their candidate types will not
match since both ontologies are likely to use their own terms for the type, i.e.
in DBpedia Jim Carrey is of type http://dbpedia.org/ontology/Actor while
in Freebase his type would be http://rdf.freebase.com/ns/film.actor.

After processing our second seed “Josh Brolin”, and finding its seed URI to
be http://rdf.freebase.com/ns/en.josh_brolin, we can add types to the
TypeCandidateList from the following triples:

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/film.actor>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/tv.tv_guest_role>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/people.person>

After adding the types to the TypeCandidateList, it contains the following
URIs:

o: http://rdf.freebase.com/ns/award.award_nominee

o: http://rdf.freebase.com/ns/people.person (2 times)

o: http://rdf.freebase.com/ns/film.actor (2 times)

o: http://rdf.freebase.com/ns/tv.tv_guest_role

We now want to find all types that all seeds from the SeedSet have in com-
mon, that is, we remove all types from the TypeCandidateList that occur fewer
times than |SeedSet| (Fig. 1e). After this step, our set is reduced to the two
types freebase:film.actor and freebase:people.person:

Our goal is, however, is to find the most precise concept among all seeds.
In the final step, we resolve the URIs from the TypeCandidateSet and re-
move all super concepts from each candidate from the set (Fig. 1f). That is
we remove all concepts that are objects to the predicate http://www.w3.org

/2000/01/rdf-schema#subClassOf for a subject from the TypeCandidateSet.
In our example, we can remove freebase:people.person from the set after find-
ing out that freebase:film.actor is a subclass of that concept. Our final detected
concept URI is therefore http://rdf.freebase.com/ns/film.actor.

3.2 Extraction of Entities

Fig. 2 shows the second step of the SWELC in greater detail.
After we have detected the common type URIs for all the seeds from the

SeedSet, we can query the index to find more entity mentions and extract them.

Fig. 2. The entity extraction process of the Semantic Web Entity Extractor

First we collect an EntityCandidatesSet. Fig. 2a shows the first method in
which we resolve each URI from the TypeCandidateSet and add all subject
URIs to the EntityCandidatesSet, that have a predicate which is element of
TypePredicateSet and have a URI that is element of the TypeCandidateSet
as object. In a second step, as shown in Fig. 2b, we query the index for all
combinations of predicates and detected types.

After having collected candidate URIs in the EntityCandidatesSet, we need
to find the corresponding label for each of the candidate URIs. This step is shown
in Fig. 2c. To retrieve the label, we resolve the entity candidate URI and analyze
all triples with a predicate element of LabelPredicateSet. Again, we want to be
ontology independent and use only generic vocabulary. The LabelPredicateSet
contains the following predicates:

p: http://www.w3.org/2000/01/rdf-schema#label

p: http://www.purl.org/dc/elements/1.1/title

If we find a label we extract the entity. If there are several labels, we search
until we find the one labeled as English (“@en”). If we are not able to find the
label by analyzing the entity candidate’s triples, we try to guess the label from
the entity candidate URI itself.

We perform these steps for each candidate entity in the EntityCandidateSet
and move on to the ranking step when we have processed all candidates.

3.3 Ranking Extractions

Fig. 3 shows the third and last step of the SWELC in greater detail.

Fig. 3. The entity ranking process of the Semantic Web Entity Extractor

To rank the entities, we compute the similarity of each extracted entity with
the entities from the SeedSet (3b). The more similar the entity, the higher the
rank. As a similarity function we use the Jaccard similarity coefficient as shown
in Equation 1, where Triplesseeds is the union set of all predicates and objects
(URIs and literals) that were found for the seed entities from the SeedSet and

Triplesentity is the set of all predicates and objects that were found for the entity
that is being ranked (3a).

Rank(entity) =
Triplesseeds ∩ Triplesentity
Triplesseeds ∪ Triplesentity

(1)

The rationale behind this similarity approach for ranking is that ranking
should be relative to the entities from the SeedSet. For instance, if we used
only comedy actors as seeds, other comedy actors should be ranked higher than
other actors. The amount of predicates and objects that comedy actors have in
common is usually higher than that of musical actors and comedy actors.

4 Evaluation

In this section we evaluate SWELC4. In all our experiments, we used the API
of Sindice.com as the gateway to the Semantic Web.

4.1 ELC on 17 concepts

Fig. 4 shows the precision of SWELC on a set of 17 different concepts. For each
concept, we evaluated SWELC with and without the automatic concept detec-
tion step. For each concept we manually assigned over three URIs on average
from different ontologies. For the automatic detection step we used four ran-
domly picked seeds and tried to detect a concept with 40 attemps maximum. If
nothing was found, we reduced the seed set size to three, tried 40 more times, and
so on. Surprisingly, the average precision of SWELC was only about 3% lower
when automatically detecting the concept compared to the manually assigned
ones. Indeed, for several concepts, automatic detection found better matching
concept URIs than we selected manually (e.g for Sports Team).

4.2 Comparison to Related Work

In this section, we compare the SWELC to the two state-of-the-art systems
Boo!Wa! and Google Sets. We randomly chose five concepts from different do-
mains which are namely Lake (location), Movie (product), Politician (per-
son), Newspaper (organization), and Airport (construction). As the ELC task
is mainly user oriented, we use the precision@k measure for evaluation, which
correlates well with the user’s satisfaction. We use k = 10 largeley because
Google Sets seldom returns more results even in the large result list. For each
concept, we evaluated the result lists three times, each time with three randomly
selected seed entities. If a system did not produce an answer, we removed an en-
tity and tried again. We also removed the seed entities from the result list since
they would be of no help to a user. Table 1 shows the comparison of the preci-
sion@10 values for the three systems across the five concepts5. Interestingly, the

4 A demo is available online within the WebKnox project: http://webknox.com/wi
5 Online evaluation on Google Sets and Boo!Wa! was performed in August 2011.

http://webknox.com/wi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Actor
Airplane

Airport
Athlete

Band
Car
City

Computer Mouse
Country

Lake
Mobile Phone

Movie
Newspaper

Politician
Restaurant

Sports Team
University

Average

Precision

Manually Assigned Concepts Automatically Detected Concepts

Fig. 4. SWELC Precision across 17 Concepts

Boo!Wa! system was unable to answer any of the 15 queries with a result list.
Google Sets performs well on the popular concept Movie but is overall rather
concept dependent. SWELC performs 5% better than Google Sets overall in our
evaluation. It is worth mentioning that SWELC returned many more results (up
to 6,000 movies for example) than Google Sets. The problem with SWELC is
the concept detection. If the seeds were selected properly and the concept was
detected correctly, almost all the answers were correct. If a wrong concept was
detected, almost all results were wrong. Improving the concept detection will
therefore yield much higher precision scores.

Concept Lake Movie Politician Newspaper Airport Overall

Google Sets 0.07 1.00 0.27 0.87 0.70 0.58

SWELC 0.50 0.33 0.33 1.00 1.00 0.63

Table 1. Precision@10 scores across three different ELC systems for five concepts

5 Conclusion

We have presented an ELC algorithm that utilizes the vast amount of informa-
tion stored in the Semantic Web. We were able to show that the system reaches
about 79% precision across 17 concepts when instantiated with one to four seeds
and outperforms the state-of-the-art systems Boo!Wa! and Google Sets by at
least 5% in precision@10. The system can still be improved, especially since the
choice of seeds has a strong influence on the generated lists.

References

[1] Google Sets. System and methods for automatically creating lists. US Patent:
US7350187, March 2008.

[2] K. Balog, E. Meij, and M. de Rijke. Entity Search: Building Bridges between Two
Worlds. In SemSearch2010, Raleigh, NC, 2010. ACM.

[3] B. Dalvi, J. Callan, and W. Cohen. Entity List Completion Using Set Expansion
Techniques. In Proc. of the Nineteenth Text REtrieval Conference, 2011.

[4] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[5] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and T. Stegemann. RelFinder:
Revealing Relationships in RDF Knowledge Bases. In Proc. SAMT 2009, pages
182–187, Berlin/Heidelberg, 2009. Springer.

[6] J. Lehmann, J. Schüppel, and S. Auer. Discovering Unknown Connections - the
DBpedia Relationship Finder. In Proc. of the CSSW 2007, volume 113 of LNI,
pages 99–110. GI, 2007.

[7] R. C. Wang and W. W. Cohen. Language-Independent Set Expansion of Named
Entities Using the Web. In The 2007 IEEE International Conference on Data
Mining, pages 342–350, 2007.

A Meeting the Minimal Requirements

1. The application is end-user oriented in the same way Google Sets and Boo!Wa! are.
Users searching for related entities can use the ELC service, for example, someone
trying to generate lists of newspapers can type three newspapers and gets a list of
more related newspapers. This scenario is probably not for the “general Web user”
but rather domain experts or users in need for lists.

2. Information sources are under diverse ownership and are semantically heteroge-
neous (we query sindice.com which again has many different sources in its index).
There are millions of tuples index by sindice.com which makes it more than a toy
example.

3. Meaning is represented using RDF. We need this meaning to know which classes
a certain entity is of.

B Meeting the Desired Requirements

1. A Web interface to the application is available at http://webknox.com/wi (Entity
List Completion).

2. The application scales as it is based on sindice.com. The time for generating the
entity lists does not scale well, however. The user wants to find something fast and
the more tuples we search through the long it takes.

3. As discussed in the related work section, we apply Semantic Web technology to a
well-studied task of Entity List Completion. Semantic Web technologies have not
been researched in depth for this task and in our evaluation we show that it is
beneficial to use the Semantic Web.

4. We also rank the entities using context (which are all triples of the entities).

http://webknox.com/wi

	Entity List Completion using the Semantic Web

