
An autosuggest service based on lod backlinks

Ioannis Papadakis1 and Michalis Stefanidakis2

1 Ionian University, Dept. of Archives and Library Science
Ioannou Theotoki 72, Corfu, 49100, Greece

2 Ionian University, Dept. of Computer Science
Plateia Eleytherias, Corfu, 49100, Greece

{papadakis,mistral}@ionio.gr

Abstract. Augmented and meaningful interlinking between the triple-
stores of the lod cloud is vital to the success of the linked-data movement;
the employment of URIs alone is not enough to integrate datasets and
make them accessible to humans and machines. In this paper, a layered
interlinking architecture is presented, based on the concept of a registry,
a place where linked-data services can store information about entities
in an open and expandable way.
As a demonstrator for the Billion Triple Challenge, an autosuggest ap-
plication is presented (http://thalassa.ionio.gr/ranked/), capable of
enhancing the interlinking among diverse datasets through the utiliza-
tion of backlinks, i.e. references to the URIs of a local dataset originating
from remote datasets.

Keywords: backlinks, linked-data, registry, autosuggest, autocomplete

1 Introduction

The compulsory employment of URIs for the identification of the various re-
sources that constitute the cell of the information existing within each lod
dataset, certainly facilitates interoperability between diverse datasets. However,
the employment of URIs alone is not enough. The lack of adequate protocols
and tools that would automate the process of reusing such URIs, has led to the
current status of linked data, where the participating datasets are very poorly
integrated with each other. Even if some of these datasets are linked, this is often
the result of a lot of hard and time-consuming manual work [2].

The vision of a highly interlinked lod cloud depends on the number of refer-
ences from within a local dataset to URIs that are introduced in remote ones. It
is therefore apparent that the necessary tools should be provided that would fa-
cilitate the automated discovery of “useful”, remote URIs. Such tools would not
only be employed from lod dataset providers, but also from end-user applications
wishing to provide transparent access to the underlying lod cloud.

Some approaches follow the centralized model in order to offer services capa-
ble of aiding users and agents in interlinking lod datasets. For example, the
OKKAM entity name system ENS [2] proposes a service capable of creat-
ing upon request and maintaining unique URIs for resources mentioned within



lod datasets. Another, quite popular service is sameas.org3, which accepts a
given URI and accordingly provides a list of equivalent URIs existing in remote
datasets. Like any other centralized solution, this service suffers from scalability
issues concerning the synchronization of its contents with the actual contents of
the lod cloud.

Quite recently, a number of approaches emerged trying to increase the degree
of interlinking between lod datasets through the identification and management
of the backlinks of their URIs ([1], [3], UK PSI backlinking service4, Dipper5).
The importance of backlinks has been initially identified by Google through the
implementation of its famous PageRank algorithm for ranking search results.

In this paper, an autosuggest end-user application is proposed capable of
enhancing the interlinking among diverse datasets through the utilization of
backlinks. Backlinks are defined as the references that are made to the URIs of
a local dataset from remote ones [1]. End users of the application are able to
type some letters of a word or phrase they have in mind, and instantly retrieve
the corresponding suggestions from a registry of all native URIs, ranked by the
number of each URI’s backlinks. When compared to the suggestions a user would
get in the case of retrieving just alphabetically ranked URIs, it is evident that the
proposed approach succeeds in filtering a lot of useless information that exists
in the entire BTC dataset. Moreover, as it will be described later in this paper,
the realization of the autosuggest application for the BTC dataset is engineered
in a modular way that promotes scalability should it be endorsed by the data
providers of the online lod cloud.

2 The proposed layered interlinking architecture

In order to demonstrate the effectiveness of the proposed approach, a registry of
native URIs has been created for every triplestore within the BTC dataset. The
registries interact with a distributed backlink service which in turn underpins
an autosuggest service and end-user application that aid users in retrieving the
most popular URIs within the BTC dataset. Popularity is measured according to
the number of backlinks of each native URI. The proposed architecture consists
of two major components (Fig. 1):

– A simulated linked-data cloud, based on the entire BTC dataset 6. This cloud
provides the data needed for the underlying services and the corresponding
end-user application.

– A registry, a set of web services and an end-user application demonstrating
the concept of the proposed approach.

In the subsequent sections, the architecture, functionality and justification of
the aforementioned components are presented.

3 sameas online service: www.sameas.org, accessed at: 29.9.2011
4 enakting: http://backlinks.psi.enakting.org/, accessed at: 29.9.2011
5 dipper: http://api.talis.com/stores/iand-dev1/items/dipper.html, accessed at:

29.9.2011
6 Billion Triple Challenge 2011 Dataset: http://km.aifb.kit.edu/projects/btc-2011/



Fig. 1. The major components of the proposed infrastructure.

2.1 The simulated linked-data cloud

The term simulated linked-data cloud describes a dataset consisting mostly of
entity URIs and their appearance counts in the triplestores that constitute the
dataset. This dataset has been created by processing the entire BTC dump and
acts as the data source of the actual components of the layered architecture that
is described throughout this paper.

Processing was performed as an initial off-line step and is decoupled from
real-time web services and front-end application. This step has the sole purpose
of building the simulated environment. As it will be argued in the following para-
graphs, this method of environment building is unnecessary in a real-world setup,
since online triplestores possess by definition all necessary dataset information.

The building process of the simulated linked-data cloud is split into the fol-
lowing steps:

– Identification of the provenance triplestores that appear as sources of BTC
triples.

– Grouping of allunique entity URIs, according to their provenance triple-
stores.

– Identification of triples that contain foreign URIs, i.e. references to entity
URIs not belonging to the provenance triplestore of the triple.

– Discovery of URI labels, enabling human user access to entity URIs.

Provenance Triplestores In the simulated environment created from the BTC
dataset, provenance triplestores are perceived as autonomous organizations with



their own linked-data management policies, in an analogy to Internet’s Domain
Name System – DNS. Indeed, the provenance URI of each quad within the
BTC dataset is processed in order to create the simulated set of provenance
triplestores. Each provenance triplestore corresponds to a domain name that
derives from the original provenance URI of a quad by keeping only the first two
levels of the dot hierarchy of the domain name of the corresponding URI (e.g.
a.example.org and b.example.org are considered manifestations of the same
triplestore named collectivelly example.org).

Due to the aforementioned method for building provenance URIs, the re-
sulting set of provenance triplestores bears an accurate resemblance to the real
linked-data cloud on the web. The accuracy of the provenance URIs is essen-
tial, because the proposed registry services depend on detailed knowledge of
triplestores and their interlinking.

Unique URIs In actual web setups, the association between a linked-data
URI and its owner triplestore is conventionally identified by its’ namespace. In a
similar manner, the simulated linked-data cloud records all entity-owner triple-
store associations. The process revealed 102,773,693 unique URI references, from
which 87,888,452 belong to BTC provenance triplestores. The top 10 provenance
triplestores, ranked by number of URIsthey own, account for the 86% of total
unique URIs in the BTC dataset. Tracking the owner triplestores of entity URIs
is needed in the simulated linked-data cloud since it enables the creation of a
distributed URI index per owner triplestore.

Technically, in the context of linked-data every URI reference is an entity
reference. Practically however, a web page URL, an ontology namespace URI
and a normal linked-data entity URI may have different significance for a con-
suming application. In the simulated linked-data cloud an all-URI-encompassing
approach was taken. This is one case where a real-life’s linked-data repository
could fare better, by knowing the type of any URI it holds; the fact urges for
better data entry tools that can annotate URIs entered in the triplestore with a
sense of meaning.

Foreign URIs In any triple contained in a tripestore, a foreign entity reference
is a URI belonging to a different triplestore. In the simulated linked-data cloud,
triples with foreign URIs are processed in order to extract backlinking informa-
tion. A backlink typically informs a triplestore that one of its own entities is
being referenced in another triplestore. This knowledge facilitates crawling and
distributed querying between triplestores. In this publication, another usage of
backlinking is demonstrated: URI ranking by backlink popularity.

For extracting backlinkig information, the whole BTC dataset has been
parsed in order to locate triples with foreign URIs. When such a reference was
detected, it was recorded together with the triplestore that made the reference
(i.e. the provenance triplestore of the particular triple). The same process can
be executed in batch mode on real-life triplestore dumps. However, it is evident
that such a static scenario would affect scalability. A dynamic approach such as



the one proposed in [1], is better suited for the decentralized and ever-evolving
nature of the online lod cloud.

Labels of URIs Human-readable labels are a significant aid for the usage
of linked-data, be it in the case of an end-user application or of a triplestore
maintenance tool. In the proposed end-user application, the main focus is on
a search tool with “autosuggest” (or “autocomplete”) functionality. This kind
of tools depends heavily on textual labels describing linked-data entities. For
this reason, as many labels as possible were extracted from the BTC dataset by
examining the predicates of each triple. The process of label extraction searched
a heuristically compiled set of predicates and identified 10,931,614 unique labeled
entities. The summary of predicates and label counts per predicate are presented
in Table 1.

Table 1. Predicates and label counts per predicate

Predicate Label Count

http://open.vocab.org/terms/sortLabel 58,519

http://purl.org/dc/elements/1.1/title 2,062,880

http://www.fao.org/aims/aos/languagecode.owl#hasEnglishName 7,642

http://www.w3.org/1999/02/22-rdf-syntax-ns#label 6

http://www.w3.org/2000/01/rdf-schema#label 8,540,192

http://www.w3.org/2004/02/skos/core#altLabel 1,517

http://www.w3.org/2004/02/skos/core#prefLabel 259,895

http://zeitkunst.org/bibtex/0.1/bibtex.owl#title 963

What is immediately apparent in Table 1 is the diversity of predicates used
to attach textual information to linked-data entities. The list of predicates is
by no means exhaustive and also contains some hard-to-guess predicates. More-
over, labels can be attached to internal blank nodes, making them impossible
to use for characterizing an entity. This fact stresses the difficulty of bulk label
extraction from a random triplestore without prior knowledge of its label coding
conventions. In the online lod cloud a better approach would be to keep track of
any text that can be used as a label at the time of data entry in a triplestore.

The provided BTC dataset suffered also from the fact that there is no guar-
anty that all labels of BTC entities found their way into the dataset. Although
this is not the case with real-life triplestores and consequently scalability is not
affected, nevertheless it was necessary for the needs of this challenge to use addi-
tional external linked-data dumps containing entities mentioned in BTC dataset,
in order to enrich the label set with additional 1,201,381 labels.



2.2 Registry-based Web Services

The ultimate goal of the demonstrated setup is to show the effectiveness of the
layered architecture, which is described throughout this paper. At the bottom
level of the proposed architecture finds its place the registry, a component con-
taining all entity URIs that are owned by a triplestore. The registry’s database
can store various types of “interesting” information, depending on application
needs. This information is exposed to a set of middleware services wishing to
promote interlinking among lod datasets. Such services are in turn employed by
application-specific services that expose interlinking functionality to end-user ap-
plications and agents. The overall layered architecture is designed to be scalable
with an open scheme of pluggable modules, which are outlined below:

The Registry The Registry keeps an index of all the native entity URIs of a
triplestore together with information concerning the backlinks within the BTC
dataset. The modular nature of the registry provides the opportunity to store
other information about each native entity URI, besides its backlinks. Such in-
formation depends on the nature of the corresponding services. The registry is
realized as a MySQL database powered by the Sphinx indexer7.

The Backlinking Service The backlinking service answers requests for back-
links of specific local entity URIs within a triplestore. It utilizes the registry by
attaching backlinking information to local entity URIs already existing in the
registry. When a backlink of a URI is discovered, the registry is updated with in-
formation concerning the backlink’s triplestore (i.e. provenance information) and
the number of times the entity URI has been referenced in triples of the remote
triplestore. The backlinking service’s endpoint is implemented as a REST-style
web service, which queries the registry about the backlinking information of a
local entity URI and accordingly receives the corresponding result set in order
to pass it to the autosuggest service. For the needs of the Billion Triples Chal-
lenge, the twisted framework8 has been employed for the issuing of the necessary
queries to the registry and the communication with the autosuggest service.

The Autosuggest Service The autosuggest service provides human-searchable
access to the entity URIs of a triplestore. Moreover, it adds to the registry
a searchable text index, built from the labels of the entities. The service’s end-
point is implemented as a REST-style web service, which asks the registry about
entity URIs that their label matches the user’s input. Moreover, it requests from
the backlink service the backlink information of each matched entity URI. Both
the responses are accordingly merged and tunneled to the autosuggest end-user
application. For the needs of the Billion Triples Challenge, the twisted frame-
work has been employed for the issuing of the necessary queries to the registry

7 Sphinx indexer: http://sphinxsearch.com, accessed at: 29.9.2011
8 twisted: http://twistedmatrix.com, accessed at: 29.9.2011



and the consequent communication with the backlinking service as well as the
autosuggest end-user application.

The Autosuggest end-user application The proposed autosuggest end-user
application9 utilizes the layered architecture which is described throughout this
paper in order to provide its users with a way to retrieve URIs from the sim-
ulated linked data cloud ranked by their popularity. More specifically, the pro-
posed application provides the opportunity to address queries consisting of some
characters to the entire cloud or to a certain triplestore. The users are able to
choose whether they want the resulting URIs to be ranked according to the
number of their backlinks or, alphabetically ranked. The end-user application is
an ajax-based web application, which exchanges information with the aforemen-
tioned autosuggest service according to a request/response protocol, that issues
http GET requests and retrieves json and xml responses.

3 Conclusions

In this paper, an autosuggest application for the BTC dataset is presented, which
ranks the URIs that exist within the triples of the BTC dataset according to the
number of their backlinks. The proposed application enhances the interlinking
between the various triplestores that constitute the BTC dataset by utilizing the
underlying backlinks.

The main concern behind the implementation of the proposed application was
the need to support it with a scalable architecture that could easily be adopted
by the entire, online lod community. For this reason, one of the first design
decisions that was made, dictated that the implementation should be based on
infrastructural components applicable to every lod triplestore of the lod cloud.
Along these lines, the selected approach is based on a modular architecture that
can be easily adopted from existing lod dataset providers and capable of being
extended with yet-to-come applications focusing on the enhancing of interlinking
between lod triplestores.

References

1. Stefanidakis, M., Papadakis, I.: Linking the (un)linked data through backlinks. In:
Proceedings of the International Conference on Web Intelligence, Mining and Se-
mantics, WIMS ’11, pages 61:1–61:5, New York, NY, USA, 2011. ACM.

2. Bouquet, P., Stoermer, H. and Bazzanella, B.An entity name system (ENS) for
the semantic web. In Proceedings of the 5th European semantic web conference on
The semantic web: research and applications (ESWC’08), Sean Bechhofer, Man-
fred Hauswirth, Joerg Hoffmann, and Manolis Koubarakis (Eds.). Springer-Verlag,
Berlin, Heidelberg, pp. 258-272.

9 Autosuggest app: http://thalassa.ionio.gr/ranked



3. Tramp, S., Frischmuth, P., Ermilov, T. and Sauren Auer. Weaving a social data
web with semantic Pingback. In Proceedings of the 17th international conference
on Knowledge engineering and management by the masses (EKAW’10), Philipp
Cimiano and H. Sofia Pinto (Eds.). Springer-Verlag, Berlin, 2010, pp. 135-149.

Appendix: Addressing the evaluation requirements

1. The applications must make use of the Billion Triple Challenge 2011 Dataset.
The entire BTC dataset has been parsed and fed into an accordingly designed
database. Autosuggest application: while the user types some letters of a
word or phrase, he is presented URI suggestions, ranked by the number of
each URI’s backlinks.

2. The tool or application has to make use of at least the first billion triples.
The autosuggest application maintains an alphabetically ranked index of
102M unique URIs together with their backlinking information, that were
extracted from the entire BTC dataset.

3. The tool or application is allowed to use other data.
For unlabeled URIs belonging to the BTC dataset, external sources (dbpedia,
musicbrainz dumps) were used to acquire these labels.

4. Theapplication does not have to be specifically an end-user application.
The proposed autosuggest application is a highly interactive, end-user ap-
plication.

– The application should do more than simply store large numbers of triples.
The proposed application manages the URIs that constitute the underlying
triples and ranks them according to their backlinks

– The application or tool(s) should be scalable.
The end-user application is based on a modular layered architecture that can
be endorsed by all lod dataset providers. Besides the centralized approach
that has been inevitably employed for the needs of the BTC dataset, an
alternative, distributed, scalable approach has also been proposed capable
of being applied to online lod triplestores.

– The application should show the use of the very large, mixed quality data set.
The application can cope with the varying quality of BTC dataset sources
and demonstrates a case of qualitty ranking by entity popularity facilitating
the user to select useful info.

– The application should either function in real-time.
The proposed application requires pre-computation for the identification of
the underlying URIs, but it is realized real-time, since it has a end-user part
that functions in real-time.


